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Summary

ML workflow automates fracture
and  baffle identification in
completion design for CO, storage
and geothermal systemes.

Manual interpretation of FMI logs is
time-consuming and uncertain.

Computer vision and deep learning
detect fractures and baffles,
reducing cost, time, and bias.

Applied to IBDP, workflow achieves
time and cost reductions, identifies
fractured zones, baffles, and
enhances CO, pressure forecasting.

Validated by microseismic and
image log interpretations, workflow
provides accurate mapping,
improving post-injection analysis.

Results

The computer vision workflow generates a
baffle density log from image logs, accounting
for different resolutions and providing user-
defined interpolation.

Figure 2 highlights seven intervals (labeled A
to G) on baffle density logs, showing
variations in baffle counts.

The transition from Eau Claire shale to Mt.
Simon E (Interval A to B) exhibits moderate
spikes in baffle counts.

Interval E and F show correlations between
baffles and micro seismic events, with the
computer vision workflow detecting baffles in
clean formations and generating logs with
less variance and higher average baffles.

Interval E detects baffles in a clean formation,
correlating with micro seismic events.

Interval F exhibits similar correlations, with
the computer vision workflow showing less
variance and higher average baffles.

Figure 3 shows the baffle count log from the
computer vision workflow, interpreted baffles
log values from gamma-ray and porosity logs,
and manual interpretation of the image log.
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Figure 3 Bdffle log correlations between CV, well logs and FMI
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- Methodology
> |IBDP image logs undergo preprocessing for extracting
= [ pad arrays and depth values, visualized using a Python
T T ) | mar script on the Streamlit platform.
= e SRR | > Pixel normalization, thresholding, and Canny Edge
éé § __% s __ Detection enhance the features through filtering
E% B P techniques.
JE=SiEE g=—x=g = == = > Natural fractures per interval are recorded in a file for
E— & 5 ; = export in CSV or LAS format.
—E - s » A neural network correlates fractures with other well
: ?f*g = Ef;j; — = S logs, considering shale beddings and fractures.
=8 ¢ =i 8 === % f » A computer vision tool generates a LAS file with
% e %F £ density values, detecting baffles and fractures. It is
EE =5 = a3 accessible through an online dashboard, utilizing
| E; ?“%__ = E . = ;; 5 } Python and packages like OpenCV, NumPy, and Pandas
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Figure 1 Baffles intensity log usirig well logs.
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Figure 2 Computer vision (CV) and deep learning (DL) workflow

Conclusions
> The computer vision workflow detects baffles and

fractures in image logs, providing valuable information
for reservoir analysis and integration into simulators.

The study highlights variations in baffle density across
logs and correlations between baffles and micro
seismic events.

The online dashboard offers an open-source tool for
baffle and fracture detection, enabling data
processing, normalization, and export for reservoir

simulators.
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| Figure 6 Fracture identification from FMI log using automated CV and DL workflow .
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