

SMART-CS Initiative

<u>Science-informed</u> <u>Machine Learning to</u> <u>A</u>ccelerate <u>R</u>eal <u>Time</u> (SMART) Decisions in Subsurface Applications

Task 5: Field Deployment – Dynamic Storage Reservoir Modeling

FECM Project Review Meeting August 28 – September 1, 2023

valette gt ligt te ale

01100111011001001110

Task 5 – Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

- Field management -- to maximize storage while minimizing pressure buildup
- Induced seismicity risk assessment

Task 5 – Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

- Field management, to maximize storage while minimizing pressure buildup
- Induced seismicity risk assessment

Part 1: Unified Simulation Module

Objective: Provide a unified way for a user to interact with reservoir simulation data and run simulation workflows

Goal is a high-quality, shareable, enduring capability

Quality control and documentation

- Code hosted on GitLab
- Installable Python package makes it easy to use
- Automated unit testing suite tests every commit pushed
- Standardized code formatting and style
- Sphinx documentation is automatically built
- Issue and milestone tracking
- Following recommended software dev practices (Task 3)

NATIONAL ENERGY TECHNOLOGY LABORATORY

	Testing pipeline		JLABC	
Status	Pipeline	Triggerer	Stages	
passed 0 00:00:28 1 month ago	forgot to include new DataManagerBase sourc #930552855 ½ feature/pickle ◆ a8becSe8 ⊕ latest	(())	\odot	
passed 00:00:28 1 month ago	applied yapf #930551570 ₽ feature/pickle ⇔ 55c1784d ⊗		\odot	
passed 00:06:27 1 month ago	Merge branch 'petrel-support' into 'main' #929529305 ¥ main ◆ 68db0821 ⊗ latest	(@)	$\textcircled{\baselineskip}{\begin{subarray}{c} \bullet \bullet \\ \bullet \bullet \end{array}}$	
passed 00:03:08 1 month ago	switched tests to using a small 1D 2-cell grdec #929526526 11 6 ↔ e648725e ↔ latest merge request		\odot	
passed (3) 00:00:28	switched tests to using a small 1D 2-cell grdec #929526505 ₽ petrel-support → e640725e	(())	\bigcirc	

Issue tracking

Create methods to access pickled objects from EDX 10 - created Trionth ago by Jettrey Burgtaint: O USM Deployment: Centercontext	(e) FC 0 updated 1 month ago
fix data scaling in UTBEG model #8 - created 1 month ago by Jeffrey Burghardt	 الحياة
STRIVE Integration T- created 2 months ago by Christopher Sherman ③ USM Deployment priority: High	updated 1 month ago
Add sphinx documentation for mesh, property reshaping #6 -created 2 months ago by Christopher Sherman O Initial USM Development priority: medium (type: documentation)	⊕ F ² C ₁ 0
Code restructure related to handling of field attributes #5 - created 2 months ago by Veronika Vasylskivska Enhancement (pperceptinization)	۲ <u>۵</u> ۵
Convenience functions for slicing mesh B3 - created 2 months ago by Kayla Kroll	 (元)

Part 2: ML Surrogate Modeling

ML Input Data

- Monthly pressure and saturation distributions at Illinois Basin Decatur Project (IBDP) site in 100 realizations of permeability and porosity fields (1.73M cells) with actual CO₂ injection rates
- Training (90 cases) and testing (10 cases)
- Input data
 - Injection rate: (100, 50)
 - Permeability: (100, 126, 125, 110, 3)
 - Porosity: (100, 126, 125, 110)
 - Topology: (100, 126, 125, 110)
- Output data
 - Pressure: (, 50, 126, 125, 110)
 - Saturation: (, 50, 40, 44, 94)
- Well data
 - Injection rates: three perforation zones
 - Monitoring: 6 multi-depth sensors

Example of porosity, permeability, and injection rates (input to ML models) & examples of CO_2 saturation distribution at 1 year after the end of injection (Eclipse)

80 cases with open fault horizontally

20 cases with closed fault horizontally

ML Models

Three primary goals:

- Computational efficiency to handle IBDP data (1.73M cells, 50 time steps, 100 realizations)
- Prediction accuracy
- Flexibility associated with input, output, portability, and potentially transfer learning

ORG	ML Method	Pressure RMSE (psi)	Saturation RMSE (-)*	Note
UT-BEG	UNet-MLP	<2	~0.016	Relatively big model (122M parameters, 23.6 hr training on 2 GPUs), handling full IBDP data
ORNL	Autoencoder-MLP (AE-MLP)	~20-25	~0.018	Latent space based approach, 2D slice model for pressure
SNL	Modified DeepONet with subsampling (DeepONet)	~2	~0.018	Subsampling for computational efficiency (~ 1hr training on 1 GPU & 2.2M parameters), handling full IBDP data
LANL	Fourier Neural Operator (FNO-1)	~5	~0.015	2D input due to data size on single GPU
LLNL	Fourier Neural Operator (FNO-2)	~4	~0.015	32 GPUs for ML training with full IBDP data (2 & 1 hrs for P &S)
UIUC	Karhunen-Loeve-Deep Neural Network (KL-DNN)	<2	~0.020	Domain needs to be coarsened in both space and time due to big IBDP data

* Saturation evaluation was performed over the central part (~10%) of pressure model domain

* Challenge for saturation ML models: a majority of saturation data are zeros

Pressure & Saturation Prediction (realization 10)

Snapshots of Pressure and Saturation

ML Committee Machine (CM)

- **CM**: an ensembled approach to aggregate predictions of multiple ML models into a final decision
- For this demo, a few simple neural network models A-C for pressure at IBDP site are used
- CMs (CMEA and CMML) performed better than individual ML models

Part 3: Accelerated History Matching and Plume Visualization with Machine Learning

Authors and Contact Information

Changqing Yao, Masahiro Nagao, Akhil Datta-Gupta

Petroleum Engineering

Texas A&M University, College Station, TX 77843

Objective and Challenges

- Development and application of ML-assisted tools and workflows for fieldscale application and validation of geologic carbon storage
 - Rapid forecasting of CO2 plume evolution constrained by observed distributed temperature and pressure data while accounting for data sparsity and geologic uncertainties
- Current Challenges
 - Expensive forward simulation: multiphase, compositional and coupled flow
 - Repeated simulations for model calibration and uncertainty analysis
 - Traditional history matching is time consuming -- often takes weeks/months and is not amenable to real time decision-making

Proposed Workflow: Outline of Steps

- Dimensionality and computational time reduction for the training data
 - Single Time-of-Flight map representing CO₂ propagation
- Neural Network Training
 - Variational autoencoder (VAE) to compress time of flight images using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data
- Prediction of CO₂ plume images
 - Estimate Time-of-Flight map from monitoring data (pressure and temperature at the injection and monitoring wells)

Data Dimensionality and Computational Time Reduction: Single Time-of-Flight Map Representing CO₂ Propagation

Time of Flight (TOF): Travel time of a neutral tracer along streamlines representing the flow field and fluid transport

Proposed Workflow: Outline of Steps

- Dimensionality and computational time reduction for the training data
 - Single Time-of-Flight map representing CO₂ propagation
- <u>Neural Network Training</u>
 - Variational autoencoder (VAE) to compress time of flight images using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data
- Prediction of CO₂ plume images
 - Estimate Time-of-Flight map from monitoring data (pressure and temperature at the injection and monitoring wells)

Neural Network Training

NATIONAL ENERGY

Proposed Workflow: Outline of Steps

- Dimensionality and computational time reduction for the training data
 - Single Time-of-Flight map representing CO₂ propagation
 - Neural Network Training
 - Variational autoencoder (VAE) to compress time of flight images using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data
 - Prediction of CO₂ plume images
 - Estimate Time-of-Flight map from monitoring data (pressure and temperature at the injection and monitoring wells)

Prediction of CO2 Onset Time Map

Predict the Time-of-Flight map based on the field monitoring measurements

IBDP Model Description and Data Availability

23

- •Grid: 126 * 125 * 110 (1.73 Million Cells)
- •ECLIPSE Compositional Model (E300)
- Thermal Option
- •CO2STORE Module
- •Simulation Period: 2011-2015
- •Run Time: 12 hours with 32 Cores Parallel run

Time of Flight Calculations : Validation of Flux Field Stability

- **Challenge**: Run time for a full simulation is too long (12 hrs) and unfeasible for training data generation purposes (hundreds of simulations)
- Solution: Calculate time of flight when the flow field is stabilized

Sensitivity Analysis for Training Data Generation

Selected Parameters: MLTPV1/3/5, MULTX3/5, MULTZ3, Rock Compressibility, Rock/Fluid Thermal Conductivity, Rock Heat Capacity

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Pressure and Temperature Matching Comparison

Significant speed-up: 5 hours for training, seconds for model calibration/predictions as opposed to traditional history matching that can take days or weeks.

U.S. DEPARTMENT OF

3D CO₂ Saturation Contour Comparison

NATIONAL ENERGY

Summary

- Proposed ML assisted workflow and application to the IBDP site shows promising results with orders of magnitude speed up
- Incorporated thermal effects to integrate DTS data and utilized Time-of-Flight to reduce computational time substantially
- Future Opportunities
 - Leverage Oil Industry Experience: Fast Marching Method for Coupled Flow, Streamlines for visualization, Storage/CO2 Sweep Optimization via Rate control

Questions?

Acknowledgements

Funding:

• This work was funded by the SMART Initiative through the DOE Office of Fossil Energy and Carbon Management and the Bipartisan Infrastructure Law.

Auspices:

- Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07-NA27344.
- Portions of this work were performed under the auspices of the U.S. Department of Energy by Pacific Northwest National Laboratory under contract DE-AC05-76RL01830.
- Portions of this work were performed under the auspices of the U.S. Department of Energy by Sandia National Laboratories under contract DE-NA0003525.
- Portions of this research were executed through the NETL Research and Innovation Center's Carbon Storage
 Program

Pressure (psi) & Saturation (-) at six different depths in monitoring well (realization 10)

- Mesh geometry
- Pressure field time history
- Saturation field time history
- Stress field time history (planned)
- Strain field time history (planned)

