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Task 5 -Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:
* Field management -- o maximize storage while minimizing pressure buildup
* Induced seismicity risk assessment

GCS Simulation Today: SMART Vision:

* Human-labor intensive * Human-labor efficient
* Heuristic exploration :> * Automated workflows
* Slow and non-interactive * Highly interactive

* Decision-Driven * Decision-Driven
e Ensemble Based * Ensemble Based + ML Acceleration
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Task 5 -Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:
« Field management, to maximize storage while minimizing pressure buildup
* Induced seismicity risk assessment

Today
5.1: Unified simulation platform and data generation «— Part 1
5.2: Rapid physics-based predictive models for flow and geomechanics
5.3: Machine learning surrogate models «—f Part2
5.4: Rapid data assimilation and history matching — Part3

5.5: Optimization of field Parameters

.8. DEPARTMENT OF




Part 1: Unified Simulation Module
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Unified Simulation Module
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Objective: Provide a unified
way for a user to interact with
reservoir simulation data and
run simulation workflows



Unified Simulation Module Data Flow

ReservoirPropertyManager

Input Reservoir Data

* Characterization
and Geomodeling

* Task 4 Imaging

e EDX

ForwardModel
(Full-Physics or ReservoirStateManager
ML Surrogates)

St

OperationalScenarioManager Iterative Workflows:

1 History-Matching, Optimization |

Input Injection and
Monitoring Well Data
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Output Dynamic Reservoir
Data
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Direct connection with
SMART platform components
(VLE, history matching, etc.)

Use outside of SMART
platform enabled with:
e VTK files (implemented)
* RESQML files (planned)




Unified Simulation Module

Goal is a high-quality, shareable, enduring capability

Quality control and documentation

« Code hosted on GitLab

« Installable Python package makes it easy to use

« Automated unit testing suite tests every commit pushed
« Standardized code formatting and style

«  Sphinx documentation is automatically built

* Issue and milestone tracking

« Following recommended software dev practices (Task 3)
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Testing pipeline

Status. Pipeline

() passed forgot to include new DataManagerBase sourc...

® 00:00:28 #930552655 P feature/pickle < abbecSed
£ 1month ago @
latest

() passad applied yapf

® 00:00:28 #930551570 ¥ feature/pickle <o 55c1784d
1month ago ¢

() passed Merge branch 'petrel-support’ into 'main’
® 00:06:27 #929528305 ¥ main < 60dbd821
£3 1month ago latest

() passed switched tests to using a small 1D 2-cell grdec...

#929526526 116 © e64B725e ©

@ 00:03:08
£ 1month ago latest merge request

(@ passed switched tests to using a small 1D 2-cell grdec...

@ 00:00:28

#929526505 ¥ petrel-support -0 e448725e
# 1month aga @

Issue tracking

D Create methods to access pickled objects from EDX
#9  created 1 month ago by Jetfrey Burghardt & USM Deployment
[ Enhancement ]

D fix data scaling in UTBEG model
48 created 1 b

Jettray Burghardt

O STRIVE Integration
By
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Stages

©

[

e o
pasted 1 month 360




Part 2: ML Surrogate Modeling
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ML Input Data

= Monthly pressure and saturation distributions at Illinois Basin Decatur Project (IBDP) site in 100
realizations of permeability and porosity fields (1.73M cells) with actual CO, injection rates

80 cases with open
fault horizontally

Training (90 cases) and testing (10 cases)

Input data
* Injection rate: (100, 50)
« Permeability: (100, 126, 125, 110, 3)
e Porosity: (100, 126, 125, 110)
» Topology: (100, 126, 125, 110) T—— [Mscﬂd]

Output data - | 1 Mtons |
* Pressure: (, 50, 126, 125, 110) - ' f°r3yea“ 20 cases with cIosed

° Saturation: (’ 50’ 40’ 44’ 94) 201201 20120? 201301 201307 2014-01 2014-07 201501 2015-07 2016-01 fault horlzonta”y
« Well data Example of porosity, permeability, and
injection rates (input to ML models) &

* Injection rates: three perforation _ It
zones examples of CO, saturation distribution at

. Monitoring: 6 multi-depth sensors 1 year after the end of injection (Eclipse)
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ML Models

Three primary goals:

= Computational efficiency to handle IBDP data (1.73M cells, 50 time steps, 100 realizations)

= Prediction accuracy

= Flexibility associated with input, output, portability, and potentially transfer learning
Pressure Saturatlon

" Relatively big model (122M parameters, 23.6 hr training on 2
UT-BEG [l 0.016 GPUs), handling full IBDP data

0/:,'|5 Autoencoder-MLP (AE-MLP) ~20-25 ~0.018 Latent space based approach, 2D slice model for pressure
Modified DeepONet with

~) ~0.018 Subsampling for computational efficiency (~ 1hr training on 1 GPU

subsampling (DeepONet) & 2.2M parameters), handling full IBDP data
Fourier N | . . .
LANL (:Nug?lr) eural Operator ~5 ~0.015 2D input due to data size on single GPU
LLNL (F'fﬁg?zr)'\'e“ra' Operator ~4 ~0.015 32 GPUs for ML training with full IBDP data (2 & 1 hrs for P &S)
uIuC Karhunen-Loeve-Deep < ~0.020 Domain needs to be coarsened in both space and time due to big
Neural Network (KL-DNN) IBDP data

* Saturation evaluation was performed over the central part (~¥10%) of pressure model domain
* Challenge for saturation ML models: a majority of saturation data are zeros
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Pressure & Saturation Prediction (realization 10)

Pressure plot with 1% of entire data Saturation plot with 5% of entire data

Pressure_1% _Data_Realization_10 Pressure_1%_Data_Realization_10 Saturation_5%_Data_Realization_10 Saturation_5%_Data_Realization_10
4000 ) 08 07
< =] DEEPONet | Unet-MLP DeepONet Jnet-MLP
8 3500 - ) o4 ; 05
O 3
'-6 3250 ) g o f ; 04
g 3000 ) E , 0.3
”IJ -
=
Sl ' : lativel d b d
S . : . . Relatively good accuracy, but need to
=« Multiple ML models with high accuracy .
] s improve ML model accuracy .
2250 2500 2750 3000 3250 3500 3750 4000 250 2500 2750 3000 3250 3500 3750 4000 00 02 o o6 o:al St
EC I | ps e Eclipse-Data Eclipse-Data
Pressure_1%_Data_Realization_10 Pressure_1%_Data_Realization_10 Saturation 5% Data Realization 10 Saturation_5%_Data_Realization_10
= =" = 0.7 1
4000 1 4000 - |
FNO-1 FNO-2 “1FNO-1 | FNO-2
3750 3750 1 0.6 - *
3500 3500 05 ] 0.5
E 3250 4 3250 g i 0.4
% 000 3000 % 03 0.3
g
2750 5950 £ 45 .
2500 5550 i ol
2250 555 i) ool
2250 2500 2750 3000 3250 3500 3750 4000 2250 2500 2750 3000 3250 3500 3750 4000 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7
Eclipse-Data Eclipse-Data Eclipse-Data Eclipse-Data
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Snapshots of Pressure and Saturation

Eclipse ML prediction at 3 yrs  Error (psi) Eclipse

-20to 50

-401to 40

_ saturation

-20to 30

-0.4100.4 -0.4t00.4

-0.41t00.4



ML Committee Machine (CM)

* CM: an ensembled approach to

aggregate predictions of -
multiple ML models into a final
decision >0

* For this demo, a few simple
neural network models A-C for
pressure at IBDP site are used

e CMs (CMEA and CMML)

Pressure RMSE (psi)
w
o

performed better than 10 pmal
individual ML models 0
Ground Model Model Model CMEA cCMML
Truth A ° ¢ CM models

v
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Part 3: Accelerated History Matching and Plume Visualization with Machine Learning
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Changqing Yao, Masahiro Nagao, Akhil Datta-Gupta

Petroleum Engineering

Texas A&M University, College Station, TX 77843
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e Development and application of ML-assisted tools and workflows for field-

scale application and validation of geologic carbon storage
= Rapid forecasting of CO2 plume evolution constrained by observed distributed
temperature and pressure data while accounting for data sparsity and geologic

uncertainties

Current Challenges
= Expensive forward simulation: multiphase, compositional and coupled flow
= Repeated simulations for model calibration and uncertainty analysis
= Traditional history matching is time consuming -- often takes weeks/months and is not

amenable to real time decision-making
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Proposed Workflow: Outline of Steps ¥E

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY

e Dimensionality and computational time reduction for the training data

= Single Time-of-Flight map representing CO2 propagation

e Neural Network Training

= Variational autoencoder (VAE) to compress time of flight images using latent variables

= Regression model to estimate autoencoder latent variables based on the monitoring data

* Prediction of CO, plume images

= Estimate Time-of-Flight map from monitoring data (pressure and temperature at the

injection and monitoring wells)
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Data Dimensionality and Computational Time Reduction:

. . . . . ==|NATIONAL
Single Time-of-Flight Map Representing CO2 Propagation N=[ExEraY
TLRE0rSry
Time of Flight (TOF): Travel time of a neutral tracer along streamlines
representing the flow field and fluid tfransport
fPerm [m%jection wel Geo Model monitor@ /T‘E’;Z'I;:;x Flux Field )
-:50
Finite Difference [40
Simulation 20
Streamline Tracfhgime-of-Flight 7 = J‘gdé:
(TOF) m
KTOF [d] Flow Field Representation \ KTOF [d] Travel Time of Neutral Tracer
W Ss00 e i ,
< Map TOF

on the Grid




Proposed Workflow: Outline of Steps ¥E
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 Dimensionality and computational time reduction for the training data

= Single Time-of-Flight map representing CO2 propagation

* Nevural Network Training

= Variational autoencoder (VAE) to compress time of flight images using latent variables

= Regression model to estimate autoencoder latent variables based on the monitoring data

* Prediction of CO, plume images

= Estimate Time-of-Flight map from monitoring data (pressure and temperature at the

injection and monitoring wells)
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Neural Network Training N=[EEeY™
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Autoencoder
TOF Maps TOF Maps
variable A
Xi Xi

Original image

Encoder

'Reconstructed image

Decoder

Q 0 )
O O O 0
. 8.1 & O
Qo O o
eed-rorward, < f
OO O30
@ et e O
O ® 0) O
@) @] O

Loss function:

Nz
_ 1 2
L= LVAE""EZ'O}' -
L J=

\_Y_)

Image reconstruction loss

Nz
52| +LZ|H. )
J) Nz ] ]
j=1 J
|
Bottleneck loss

N Nz
1 1 1
Lvae = E i = &il* — 4~ E 5[1 +1log(af) — of — uj]
i=1 =




Proposed Workflow: Outline of Steps ¥E
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 Dimensionality and computational time reduction for the training data

= Single Time-of-Flight map representing CO2 propagation

e Neural Network Training

= Variational autoencoder (VAE) to compress time of flight images using latent variables

= Regression model to estimate autoencoder latent variables based on the monitoring data

* Prediction of CO2 plume images

= Estimate Time-of-Flight map from monitoring data (pressure and temperature at the

injection and monitoring wells)
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Prediction of CO2 Onset Time Map
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Predict the Time-of-Flight map based on the field monitoring measurements

Regression
DTS data

lg
time

B .‘—>
Pressure data : ¢ : Z—var

------------

: Z—mean Latent
variables

QO 0O 0
0.5 o ® ®)
o a : O Ok O
o O O @)
2 % O Tradﬁ'ed ot o :
8 S Réed Fo@Nard NN O CR . S Trained decoder
a O Ve
time O @ ® @)
@) O O
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Multiple TOF images
considering uncertainty




Time (Days)

° ° ° oge
IBDP Model Description and Data Availability [NS]uanona
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Observed data -,
IBDP vy ccs2  ICCS oo
ccsi1 VW2 Vw1
PERM . 3400 Mt.Simon B
7 WB6
[md] %3300 { A T
'1000.00 2 1 \ Vi WB5
— 100.00 9 3200 '
£ | *WB4
—10.00 3100 [EEp—
- m Ty 2000 - eWB3 Mt.Simon A-lower
- === iy ; e 0 500 1000 1600 Ox:? EC_C_SI Injection Zone)
' Time (Days)
—WB1 —WB2 —WB3 wB4 —WB5 —WB6 Argenta
Behind-casing pressure (Monitor Well) Location of behind-casing sensors
3.600 Temperature
eGrid: 126 *125* 110 (‘l 73 Million Ce”S) 3:500 Bottom-Hole Pressure of Injection Well FF,LGZOU DTS of Injection Well
«ECLIPSE Compositional Model (E300) Faa00 | “Teaterteer e rtent s =
° ] E ° - g
Thermal Option S o |1 ) . -
*CO2STORE Module + 00 A e . &
«Simulation Period: 2011-2015 s100 o
*Run Time: 12 hours with 32 Cores Parallel runt 0 500 1000 1500 [ 6400

0 500 1000 1500
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Time of Flight Calculations :Validation of Flux Field Stabilifig=|Mneya:
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« Challenge: Run time for a full simulation is too long (12 hrs) and unfeasible
for fraining data generation purposes (hundreds of simulations)

« Solution: Calculate time of flight when the flow field is stabilized

TOF [days]

-— 2000.00

— 1600.00

Selected simulation period:
7 months (flux field has been stabilized)

— 120000

d00.00

Run Time: 12 hrs 1 hr

—
400,00

000
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Sensitivity Analysis for Training Data Generation [NZ|yanosa
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Pressure Responses (injection well + monitoring well) DTS (injection well)
/I-T-T=-="-=="--"-"--"-"-"-"-"-"-"-"-"-"-"-"-" -" - -"-"-"-"-"-"-" -" -" -" " =-""-"-"-" """ ~"°"°~"°"~"~"~"~"-"-"-"===== T e e e e e e e e e e e e e e e e e e e e e e e e e - |
IMULTPV3 : | MuLTZ3 A
1 MU I | MULTPV3 A
! ROCK | | THCONR !
IMULTPVS 1 I HEATCR :
1 1 e o e e e e e e e e e e e e e e e e e e e e e L L L L L e e e e e e e = = o L
| MULTXS [ i==] 1 MULTX3 —_—

IMULTPV1 | — ] : MULTPVS =]

CMULTZS oo L 1 MULTX5 ]

MULTPVA = MULTPV1 —m

MULTZ1 = | ROCK E

MULTZ1 1 MULTPV4 =

MULTX1 [ ] MULTZ1 "

MULTZ5 1 MULTZ1 1

MULTPVZ2 1 MULTX1 1

MULTX4 1 MULTZ5 1

MULTZ4 1 MULTPV2 1

THCONR 1 MULTX4 - 1

MULTX2 1 MULTX2 i : ] ;

-15 -10 5 0 5 10 15 -10 -8 6 -4 2 0 2 4 6 8 10
Sensitivity Sensitivity

Selected Parameters: MLTPV1/3/5, MULTX3/5, MULTZ3, Rock Compressibility, Rock/Fluid Thermal
Conductivity, Rock Heat Capacity
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Pressure and Temperature Matching Comparison (N

Significant speed-up: 5 hours for ftraining, seconds for model T

calibration/predictions as opposed to traditional history matching that
can take days or weeks.

i

| Base ML Match e Observed |
~ HM | Prediction - ~ HM | Prediction . ~ HM | Prediction
3,400 : 3,400 1 — 3,400 :
1 Monitoring well Sensor 1 : Monitoring well Sensor 2 1 Monitoring well Sensor 3
= - ) !
23300 | és,sno H és,sou H |
g g g '
2 2 H o
8 3200 $ 3,200 € 3200 | ! '
o B =N |
|
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HM | Prediction HM | Prediction M 2
< i > < > G R?=0.97
3,400 . 3,600 1 . o "
1 Monitoring well Sensor 4 : Injection Well 2 130¢
=, | €3,500 r E
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= =] |
= I g =
5 I £ 3300 : 2
¢ 3,200 2 2 |
A~ M‘_ B 3500 1 | € 120
/ | 1 B
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R U.S. DEPARTMENT OF




3D CO2 Saturation Contour Comparison N=|NaToNAL
Contour generated from CO2 saturation map with a threshold of 1% TL IE%S?RTLS%Y

Base Model (No Multiplier) ML History Match Traditional History Match

2014 December
(End of Injection)

2015 December
(1 year after Injection)
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Summary N= MRy
TS8ROk
e Proposed ML assisted workflow and application to the IBDP site shows promising

results with orders of magnitude speed up
e Incorporated thermal effects to integrate DTS data and utilized Time-of-Flight to

reduce computational time substantially

* Future Opportunities
= Leverage Oil Industry Experience: Fast Marching Method for Coupled Flow, Streamlines for

visualization, Storage/CO2 Sweep Optimization via Rate control
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Questions?
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Unified Simulation Module = [HTNAL
TL|ESHaesY

Local file
or from EDX

PTIEL + UsM ReservoirPropertyManager class |

Direct interface e
(\mp\emented)
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Unified Simulation Module
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or from EDX
(implemented)

(implemented
but not tested)
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Unified Simulation Module N = hRyA
TL|ESHaesY

USMForwardModel dasses | USM ReservoirtateNanager |
USM ReservoirPropertyManager

) )
USM OperationalScenarioManager |
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Unified Simulation Module
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