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Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:
• Field management -- to maximize storage while minimizing pressure buildup
• Induced seismicity risk assessment

GCS Simulation Today:

• Human-labor intensive
• Heuristic exploration
• Slow and non-interactive

• Decision-Driven
• Ensemble Based

SMART Vision:

• Human-labor efficient
• Automated workflows
• Highly interactive

• Decision-Driven
• Ensemble Based + ML Acceleration
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Task 5 –Dynamic Storage Reservoir Modeling

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

5.4: Rapid data assimilation and history matching

5.5: Optimization of field Parameters

Goal: Provide real-time modeling, data assimilation and forecasting to support:
• Field management, to maximize storage while minimizing pressure buildup
• Induced seismicity risk assessment

5.1: Unified simulation platform and data generation Part 1

Part 2

Part 3

Today
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Part 1: Unified Simulation Module



Unified Simulation Module

Objective: Provide a unified 
way for a user to interact with 
reservoir simulation data and 
run simulation workflows

Task 5

Task 5



Iterative Workflows:
History-Matching, Optimization

Unified Simulation Module Data Flow

Use outside of SMART 
platform enabled with:
• VTK files (implemented)
• RESQML files (planned)

Direct connection with 
SMART platform components 
(VLE, history matching, etc.)

Output Dynamic Reservoir 
DataInput Reservoir Data

ReservoirPropertyManager

OperationalScenarioManager

ForwardModel
(Full-Physics or 
ML Surrogates)

ReservoirStateManager

Input Injection and 
Monitoring Well Data

• Characterization 
and Geomodeling

• Task 4 Imaging
• EDX



Goal is a high-quality, shareable, enduring capability

Quality control and documentation

• Code hosted on GitLab

• Installable Python package makes it easy to use

• Automated unit testing suite tests every commit pushed

• Standardized code formatting and style

• Sphinx documentation is automatically built

• Issue and milestone tracking

• Following recommended software dev practices (Task 3)

Unified Simulation Module
Testing pipeline

Issue tracking
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Part 2: ML Surrogate Modeling
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ML Input Data

• Training (90 cases) and testing (10 cases)

• Input data
• Injection rate: (100, 50)
• Permeability: (100, 126, 125, 110, 3)
• Porosity: (100, 126, 125, 110)
• Topology: (100, 126, 125, 110)

• Output data
• Pressure: (, 50, 126, 125, 110)
• Saturation: (, 50, 40, 44, 94)

• Well data
• Injection rates: three perforation 

zones
• Monitoring: 6 multi-depth sensors

 Monthly pressure and saturation distributions at Illinois Basin Decatur Project (IBDP) site in 100 
realizations of permeability and porosity fields (1.73M cells) with actual CO2 injection rates

Example of porosity, permeability, and 
injection rates (input to ML models) & 
examples of CO2 saturation distribution at 
1 year after the end of injection (Eclipse)

80 cases with open 
fault horizontally

20 cases with closed 
fault horizontally

1 M tons 
for 3 years
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ML Models
Three primary goals:
 Computational efficiency to handle IBDP data (1.73M cells, 50 time steps, 100 realizations)
 Prediction accuracy
 Flexibility associated with input, output, portability, and potentially transfer learning

ORG ML Method Pressure 
RMSE (psi)

Saturation 
RMSE (-)* Note

UT-BEG UNet-MLP <2 ~0.016 Relatively big model (122M parameters, 23.6 hr training on 2 
GPUs), handling full IBDP data

ORNL Autoencoder-MLP (AE-MLP) ~20-25 ~0.018 Latent space based approach, 2D slice model for pressure

SNL Modified DeepONet with 
subsampling (DeepONet) ~2 ~0.018 Subsampling for computational efficiency (~ 1hr training on 1 GPU 

& 2.2M parameters), handling full IBDP data

LANL Fourier Neural Operator 
(FNO-1) ~5 ~0.015 2D input due to data size on single GPU

LLNL Fourier Neural Operator
(FNO-2) ~4 ~0.015 32 GPUs for ML training with full IBDP data (2 & 1 hrs for P &S) 

UIUC Karhunen-Loeve-Deep 
Neural Network (KL-DNN) <2 ~0.020 Domain needs to be coarsened in both space and time due to big 

IBDP data

* Saturation evaluation was performed over the central part (~10%) of pressure model domain
* Challenge for saturation ML models: a majority of saturation data are zeros 



Pressure & Saturation Prediction (realization 10)
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Pressure plot with 1% of entire data

DeepONet Unet-MLP

FNO-1 FNO-2

DeepONet Unet-MLP

FNO-1 FNO-2

Saturation plot with 5% of entire data

Multiple ML models with high accuracy Relatively good accuracy, but need to 
improve ML model accuracy



Snapshots of Pressure and Saturation

0.0 0.75

Error (-)
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ML Committee Machine (CM)

• CM: an ensembled approach to 
aggregate predictions of 
multiple ML models into a final 
decision

• For this demo, a few simple 
neural network models A-C for 
pressure at IBDP site are used

• CMs (CMEA and CMML) 
performed better than 
individual ML models

CM models
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Part 3: Accelerated History Matching and Plume Visualization with Machine Learning
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Objective and Challenges
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• Development and application of ML-assisted tools and workflows for field-

scale application and validation of geologic carbon storage

 Rapid forecasting of CO2 plume evolution constrained by observed distributed 

temperature and pressure data while accounting for data sparsity and geologic 

uncertainties

• Current Challenges

 Expensive forward simulation: multiphase, compositional and coupled flow 

 Repeated simulations for model calibration and uncertainty analysis

 Traditional history matching is time consuming -- often takes weeks/months and is not 

amenable to real time decision-making



Proposed Workflow: Outline of Steps
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• Dimensionality and computational time reduction for the training data

 Single Time-of-Flight map representing CO2 propagation

• Neural Network Training

 Variational autoencoder (VAE) to compress time of flight images using latent variables

 Regression model to estimate autoencoder latent variables based on the monitoring data

• Prediction of CO2 plume images

 Estimate Time-of-Flight map from monitoring data (pressure and temperature at the 

injection and monitoring wells)
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Data Dimensionality and Computational Time Reduction:
Single Time-of-Flight Map Representing CO2 Propagation

TOF [d]

Total Flux
[bbl/d]

TOF [d]

Finite Difference 
Simulation

Flux Field

Travel Time of Neutral TracerFlow Field Representation

Streamline Tracing

Map TOF
on the Grid

Geo ModelPerm [md]

Time-of-Flight 
(TOF)

d .
u

   

Time of Flight (TOF): Travel time of a neutral tracer along streamlines
representing the flow field and fluid transport



Proposed Workflow: Outline of Steps
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• Dimensionality and computational time reduction for the training data

 Single Time-of-Flight map representing CO2 propagation

• Neural Network Training

 Variational autoencoder (VAE) to compress time of flight images using latent variables

 Regression model to estimate autoencoder latent variables based on the monitoring data

• Prediction of CO2 plume images

 Estimate Time-of-Flight map from monitoring data (pressure and temperature at the 

injection and monitoring wells)



Neural Network Training
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Proposed Workflow: Outline of Steps
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• Dimensionality and computational time reduction for the training data

 Single Time-of-Flight map representing CO2 propagation

• Neural Network Training

 Variational autoencoder (VAE) to compress time of flight images using latent variables

 Regression model to estimate autoencoder latent variables based on the monitoring data

• Prediction of CO2 plume images

 Estimate Time-of-Flight map from monitoring data (pressure and temperature at the 

injection and monitoring wells)



Prediction of CO2 Onset Time Map
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Predict the Time-of-Flight map based on the field monitoring measurements
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IBDP Model Description and Data Availability
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PERM
[md]

•Grid: 126 * 125 * 110 (1.73 Million Cells)
•ECLIPSE Compositional Model (E300)
•Thermal Option
•CO2STORE Module
•Simulation Period: 2011-2015
•Run Time: 12 hours with 32 Cores Parallel run

CCS1

CCS2VW1
VW2

IBDP ICCS



Time of Flight Calculations :Validation of Flux Field Stability
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• Challenge: Run time for a full simulation is too long (12 hrs) and unfeasible 
for training data generation purposes (hundreds of simulations)

• Solution: Calculate time of flight when the flow field is stabilized

TOF [days]

7 months 1 year

2 years 3 years

Selected simulation period: 
7 months (flux field has been stabilized)

Run Time: 12 hrs      1 hr 



Sensitivity Analysis for Training Data Generation
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Selected Parameters: MLTPV1/3/5, MULTX3/5, MULTZ3, Rock Compressibility, Rock/Fluid Thermal 
Conductivity, Rock Heat Capacity

Pressure Responses (injection well + monitoring well) DTS (injection well)



Pressure and Temperature Matching Comparison
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Monitoring well Sensor 1

HM Prediction HM Prediction

Monitoring well Sensor 3

HM Prediction

Injection Well

HM Prediction

Monitoring well Sensor 2

R2=0.97

Significant speed-up: 5 hours for training, seconds for model
calibration/predictions as opposed to traditional history matching that
can take days or weeks.

Monitoring well Sensor 4

HM Prediction

ML Match ObservedBase



Contour generated from CO2 saturation map with a threshold of 1%

3D CO2 Saturation Contour Comparison
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Sg 2014 December 
(End of Injection)

2015 December 
(1 year after Injection)

Base Model (No Multiplier) ML History Match Traditional History Match



Summary
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• Proposed ML assisted workflow and application to the IBDP site shows promising 

results with orders of magnitude speed up

• Incorporated thermal effects to integrate DTS data and utilized Time-of-Flight to 

reduce computational time substantially

• Future Opportunities

 Leverage Oil Industry Experience: Fast Marching Method for Coupled Flow, Streamlines for 

visualization, Storage/CO2 Sweep Optimization via Rate control



Questions?
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Pressure (psi) & Saturation (-) at six different depths in monitoring 
well (realization 10)

SNL

UT-BEG



Unified Simulation Module

Input Reservoir 
Property Data

Data generated outside 
of platform (Petrel, 
EarthVision, etc.)

Data generated from 
Task 4 imaging 
workflow

GRDECL files (implemented)
RESQML files (planned) USM ReservoirPropertyManager class

Local file
or from EDX 
(implemented)

• Mesh geometry (structured, 
cornerpoint, unstructured)

• Porosity fields
• Permeability fields (isotropic or 

anisotropic)

Data generated from 
Task 5 history matching 
workflow



Unified Simulation Module
Input Injection and 

Monitoring Well Data

Data generated outside 
of platform

*.csv, *.xlsx
USM OperationalScenarioManager class

Local file
or from EDX 
(implemented)

• Well location
• Perforation depths
• Injection rate
• Pressure

Data generated from 
Task 5 history matching 
or VLE

Direct interface 
(implemented 
but not tested)



Unified Simulation Module

USM ReservoirPropertyManager

USM OperationalScenarioManager

USM ForwardModel classes

• Base class that defines the interface, 
making all forward models 
interchangeable

• Derived classes implement specific 
forward models

• Directly use ReservoirPropertyManager 
and OperationalScenarioManager 
objects

• Outputs ReservoirStateManagerObject

USM ReservoirStateManager

• Mesh geometry
• Pressure field time history
• Saturation field time history
• Stress field time history 

(planned)
• Strain field time history 

(planned)



Unified Simulation Module

USM ReservoirStateManager

• Mesh geometry
• Pressure field time history
• Saturation field time history
• Stress field time history 

(planned)
• Strain field time history 

(planned)

Use outside of SMART 
platform enabled with:
• VTK files (implemented)
• RESQML files (planned)

Direct connection with 
other SMART platform 
components (VLE, history 
matching, etc.)

Output Dynamic Reservoir 
Data


