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Meeting the CCS Challenge ¥
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CO, Reduction Targets NS ey
TL LABORATORY

 The U.S. Department of Energy (DOE) has announced a commitment from
several companies and organizations to reduce their carbon emissions by
50% by 2030 through DOE’s Better Climate Challenge.

« Climate Challenge is key to reaching the goal of a net-zero emissions
economy by 2050 through an equitable clean energy fransition.

* Investments are made for rapid development of large-scale CO, storage
operations. This include 45Q Tax credit for Carbon Sequestration.




Ovur Motivation

Growing momentum for Develop relevant experience /
a . . understanding among stakeholders
o rapid commercial scale . g | |
Facilitate decision-making process during

de ®) | oyme Nt Of CCS project planning, permitting, operations

Data interpretation for characterization

TrCIdiﬂOﬂCII a I’\C”ySiS iﬂVOlVGS Pre-injection planning and system design
pmelCS-bOS@d mOdels Observational data integration for

operational decision making

Recent focus on Machine Learning based
computationally expedient alternatives
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SMART Initiative

Science-informed Machine Learning to Accelerate Real Time
(SMART) Decisions in Subsurface Applications
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SMART - Visualization and Decision Support

o Platform o
SMART Functionalities SMART Applications
. . o e SMART Decision Virtual Learning to Support Permitting
Real-Time Visualization Subbort Platform o .
“CT" for the Subsurface PP Injection Operational Control

ML-based Rapid O c
Prediction
Virtual Learning O

ML-based Real-Time \ /
Forecasting ‘ ( )
“Advanced Control Room”
PHASE 1 PHASE 2

“Proof of Concept” “Developmentand Validation”
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Making Better Decisions | Phase 2 _

Transforming decisions through clear vision of the present and fufure subsurface.

Decision-makers Phases Questions
: : ' ' ' O Wh is the CO ?
Project Engineers Site/Field Selection ere is the CO, now
Permitting ® How do | move the CO,
Regulators where | want it to be?

Development
P © Is the project safe?

Operations  Willit leak, and if so,

?
Landowners/Public Closure where:

High-level Executives

e Will it cause induced
seismicity?




PHASE 1 Highlights
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Organization of Technical Activities

Virtual learning to support permitting

Task 2

Task 3

Advanced learning and
compuvutational methods

U.S. DEPARTMENT OF

Field validation of Phase 1 tools and workflows

in conjunction with NRAP and EDX4CCS

Task 4 Task 5 Task 6
Site-specific data Site-specific storage Site-specific decision
management & imaging reservoir modeling support & visualization
Task 7

Site-specific data curation




SMART Phase 2 Framework

- WP2A =
Demonstrate virtual learning
INn action to support regulators &
stakeholders during permitting

- WP 2B =
Develop advanced learning
and computational methods

- WP2C =
Apply ML-assisted workflows for
reservoir imaging and modeling fro

Phase | for field-scale deployment

[Q] New insights / information
from ML-assisted workflows —
improved communication / ease
of use during Class VI permittinge
(case study - WY CarbonSAFE)

[Q] (Near) real-time feedback for
operational control / optimization -

N improved system understanding?

(case study — IBDP)




Wiring Diagram - WP 2B - Advanced ML & Comp.

Create Software Guidance Documentation (e.g., Quality

Phase 1
Task Teams

Activity 1
Software QA Team

Coordinate

Activity 2.1/2.4
Phase 1
Interface Team
Scientific
Literature

Activity 3.2/4.2
Literature Review
Team

Monitor

Activity 2.3

2A/2C Integration
Team

Coordinate

Activity 3.1/4.1
2A/2C Technical
Team

Work Package
2A/2C Teams

Assurance, Version Control, Best Practices)

Identify List of Phase 1 Models,
Workflows, Methodologies, and
Visualization Techniques

Scan Literature for New ML/
Computational Methods

Identify High Level
Needs/Gaps

Identify Technical
Needs/Gaps

Software
Guidance
Documentation

Pipeline of
Models,
Methods, and
Workflows

List of
Needs and Gaps
for WP 2A/2C

Activity 3/4
On-Demand
Data Generation

Apply

Activity 2.2/2.4/3.1/4.1
Prioritization / Triage to Identify New
Workflow Development Targets

Develop / Test / Package / Deploy

Develop / Test / Package / Deploy

Develop / Test / Package / Deploy

Parallel Development / Deployment Loop

Datasets

Methods

Activity 1 - Software

Activity 2 - Integration

Activity 3 - ML/AI

Activity 4 - Adv. Comp.

Activity 2.2/2.3
Work with 2A/2C to
Deploy Workflows

Activity 1/3/4
Publish Workflows
to GitLab



2A - Virtual Learning in Action to Support Permitting

Goal ® Demonstrate how ML and virtual learning can be used in permitting process:
* Regulators and site developers are key customers
* Work with existing permit application to show added value

Activity 1: Activity 2: Activity 3: Activity 4:

Outreach to Regulators Improved Site Characterization Rapid Forecasting Model Explorer
Identify how Machine Demonstrate application of Demonstrate how ML-based || Show how visualization
Learning based approaches || ML-based approaches to rapid forecasting can help platform with ML models
can help during Class VI improve site-characterization with pre-injection reservoir can help stakeholders
permitting process efforts performed during pre- management decisions explore key prediction

injection phase under data uncertainties uncertainties that affect
injection/storage operations.

Activity 5:
Value of Information and Economic Decisions

Demonstrate how Machine Learning based approaches can be used to help with value
of information using existing Class VI permit application related data/models.

.S. DEPARTMENT OF




Wiring Diagram - WP 2A - Virtual Learning for Permitting

Activity 2: ML-based site
characterization

Improved characterization of
faults/fractures

Predictions of state-of-stress
Improved permeability estimate

» Geologic realizations

Activity 3: Rapid Forecasting

Reservoir Simulation Ensembles

* Location of injection wells
» Geological uncertainty
+ Well controls

Training Database
e Pressure

» CO, saturation
» Stress / deformation

Activity 4: Model Explorer

Virtual Learning Environment
* AOR (2D, 3D)

e Pressure

» Saturation

e Stress

Activity 5: VOI

Value of Information

* ML-based methods/workflows
to tie static geologic models to
fast predictive models with
economic analysis (decisions)

Activity 1: Outreach

Workshop
* Regulatory orgs, Stakeholders

» Feedback

Raw Static Database

Static Data (WP 2C2)

» Core and Well logs

*  Well tests

*  Fluid samples

« 3D seismic and passive seismic

Simulation models

Improved characterization data

New Development

Visualization

Synergy (WP 2C4
« VLE Beta version on fact track
* Recommendations

New Development
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Wiring Diagram - WP 2C2 - Data Organization & Imaging
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Wiring Diagram — WP 2C3 - Storage Reservoir Modeling
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Wiring Diagram - WP 2C4 - Decision Support & Visualization
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Data Types Available from IBDP for Reservoir Imaging

. Geologic Models - Active Source Seismic Data .« CO, Injection Monitoring Data
> Static Geologic Model ° 2D lines > CCS1 Only
o Dynamic Reservoir Model ° 3D Volume — DTS
- Geomechanical Model ’ jg VS|P — CO, Flow
o Groundwater Model volume o CCS1 and VWI
> Raw 3D Data — CO, Saturation Logs
* Project Imagery (High and Low Res) 2 J
o - Data Collected From 3 Deep — Temperature Logs

o Pre-injection Wells — TP
> During Injection ( 3 May 2012) o MWD ]

[¢]

Post Injection (30 April 2015) o Core & Sidewall Core

Final (5 Nov 2019) > Well Tests
o Geophysical Logs

e Geochem

(¢]

 Passive Seismic Events Data

o Surface Geophones
y P o Soil CO, flux and gas

o Downhole Geophones
, o Shallow groundwater
o Raw data as well as picked sampling

events o Deep Fluid Sampling

U.S. DEPARTMENT OF



SMART Presentations

1:15 p.m. - 1:40 p.m.

Overview of the SMART Initiative
Hema Siriwardane, National Energy Technology Laboratory, and Srikanta Mishra,
Battelle Memorial Institute

1:40 p.m. - 2:05 p.m.

SMART - Advanced Machine Learning and Computational Methods
Jared Schuetter, Battelle Memorial Institute, Alexandre Tartakovsky, University of
Illinois, and Chung Shih, National Energy Technology Laboratory

2:05 p.m. - 2:30 p.m.

SMART - Site Specific Data Organization and Imaging
Joe Morris, Lawrence Livermore National Laboratory, David Alumbaugh, Lawrence
Berkeley National Laboratory, and Youzuo Lin, Los Alamos National Laboratory

2:30 p.m. - 2:55 p.m.

SMART - Site Specific Dynamic Storage Reservoir Modeling
Joshua White, Lawrence Livermore National Laboratory, Hongkyu Yoon, Sandia
National Laboratory, and Akhil Datta-Gupta, Texas A&M University

2:55 p.m. - 3:20 p.m.

SMART - Site Specific Visualization and Decision Support
Diana Bacon, Pacific Northwest National Laboratory, David Morgan, National Energy
Technology Laboratory, and Maruti Mudunuru, Pacific Northwest National Laboratory

3:20 p.m. - 3:50 p.m.

BREAK - Ballroom Foyer
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Concluding Remarks

« SMART motivation, structure,
organization, wiring diagrams Thank you for

our attention
- Goal = Empower various Y

stakeholders with advanced
ML and related tools that can
accelerate decision-making

« Outcomes of SMART expected
to be publicly available

« Each WP will present its key
accomplishments from EY22

contact: smartfe@netl.doe.gov
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