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Disclaimer
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This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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Machine Learning And Advanced Computation Are The Tools We Use

Overview of the SMART Initiative
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• The goal of the SMART Initiative is to
accelerate decision-making in subsurface
applications

• Machine learning (ML) is the focus, but in 
general any advanced computational
approaches are being considered

• Phase 1 of SMART was research focused, 
identifying fast, physics-informed methods 
for several key areas in carbon capture, utilization and storage (CCUS):

• Geological characterization from pore-scale to field-scale

• Fast predictive modeling of subsurface multi-phase physics

• History matching and site optimization

• User interaction with the models through a virtual learning platform

• Phase 2 is focused on implementing these techniques for workflows at actual carbon storage sites

Science-informed Machine Learning for Accelerating 

Real-Time Decisions in Subsurface Applications



Areas of Exploration Throughout the Project

SMART Initiative Phase 2
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Many of the tools and 

workflows developed in 

SMART involve machine 

learning and advanced 

computation



Method and Tool Development to Support SMART Workflows

Task 3: Advanced Machine Learning and 
Computational Methods

• Goals and Objectives:

• Identify needs or gaps in site-specific workflows for which SMART Phase 1 solutions are not readily available

• Develop or update Phase 1 methods to meet these needs

• Publish tools for implementing these new methods in operational settings

• Work Completed to Date:

• Identified 31 needs for site-specific workflows

• Grouped these needs into topic areas and selected three topics for investigation

• Developed preliminary solutions for these topic areas

• Currently working to formalize and publish many of these tools so other SMART team members can begin
using them within their site-specific workflows

• Also continuing to develop solutions that are at a lower state of maturity
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Topic Area #1: Fast and Flexible Solutions for Fluid Flow Prediction

Projects Currently Underway
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• Project Team: NETL, LLNL, PNNL, SNL, UIUC

• Objectives

• Build flexible models that leverage 
advanced approaches (e.g., Neural 
Operators) to handle the dynamic 
evolution of pressure, saturation, and 
stress and can serve as the basis to 
expand to solve other field prediction 
problems

• These models also allow for the 
incorporation of physics and scientific 
knowledge to increase the user 
confidence and understanding of the 
model reasoning processes 

• Progress

• Initial versions of these approaches were developed and tested on one reservoir (clastic shelf) and are now 
being adapted for use at the Illinois Basin Decatur Project (IBDP), the main site being focused on in Phase 2

Approach Type Organization POC

DeepONet ML PNNL Amanda Howard

U-Shaped FNO ML LLNL Qingkai Kong

GraphNO ML NETL Chung Shih

PICKLE ML UIUC Alex Tartakovsky

HGGNN ML SNL Meen Teeratorn

Wafer Scale Engine Field 
Equation Application 
Programming Interface (WFA)

HPC NETL Chung Shih



Topic Area #2: Reduced Dimensional Representations

Projects Currently Underway
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• Project Team: UTBEG, LLNL, SNL, UIUC

• Objectives

• Map complex 3D geological parameters 
(e.g., porosity, permeability) and 
corresponding simulation variables 
(e.g., pressure fields, CO2 saturation 
distribution, and CO2 plume location) to 
a set of uncorrelated low-dimensional 
representations (i.e., latent variables)

• Perform ML within that latent 
space to model reservoir behavior more 
efficiently and reliably than ML-based 
forward models trained in the original 
parameter space

• Progress

• Trained and evaluated two different mapping approaches from geological parameters to a latent space

• Developed uncertainty quantification methods

• Applied the models to a SMART Phase 1, 120-run simulation dataset at the Gulf of Mexico High Island 24L site



Topic Area #3: Transfer Learning

Projects Currently Underway
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• Project Team: NETL, Battelle, LANL, PNNL, 
PSU, SNL, TAMU, UTBEG, UU

• Objectives

• As carbon injection and storage becomes
more widespread, there will be a need 
to re-use models and/or make do with
as few reservoir simulations as possible

• The goal on this project is to develop 
strategies to permit transfer of pre-trained 
ML models to new scenarios

• Progress

• Identified sets of scenarios in which transfer
learning may be needed (right)

• Built simulation datasets containing pairs of
scenarios for one set of conditions vs. another

• Currently building and testing solutions that
allow transfer to occur between the scenarios

Aim
Original Training 

Scenario

Target Model 
Task

Transfer Learning 
Across 

Operational 
Conditions

Fixed well locations
New well locations 
within the same site

Fixed injection rate
Dynamic injection rate 

at the same site

Transfer Learning 

Across Physical 
Systems

Operational and 
geological variation 

within one site

Pressure and 
saturation 

at a new site

Coarse-scale 
simulations

Fine-scale prediction 
at the same site

Transfer Learning 
Across Dynamic 

Systems

Simpler physics
(e.g., single-phase 

flow)

Complex physics
(e.g., multi-phase flow)



Advanced Foundational and Flexible Methods 
for Fast and High-Fidelity Fluid Flow Predictions
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• While many ML 
models have been 
developed for 
subsurface flow, 
they generally focus 
on one location or 
configuration

• There is a need for 
more flexible models 
with the same 
predictive power 

The Problem – Need Fast and Flexible Methods
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• Clastic Shelf reference reservoir model developed by Tang et al.¹
• 2,928 realizations (32,156 x 32,156 x 85 m3)

• Data shape: 64 x 64 x 28 (x, y, z)

• Four injectors equally spaced with an injection rate of 2M metric tons/year over 10
years (1 year Δt)

• Features of the data

The Clastic Shelf Dataset
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1Tang et al. “Deep learning-accelerated 3D carbon storage reservoir pressure forecasting based on data assimilation using surface displacement from InSAR” (2022)

Porosity Permeability Pressure SaturationGrid



Develop Three Advanced Methods for Modeling Subsurface Properties Over Time 

Operator Learning Approaches
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Deep Operator Networks 

(DeepONets)

U-shaped Fourier Neural 

Operator (U-NO)

Graph Neural Operator 

(GNO)



Test Case 1, t = 10 years, y=21, z=2

Pressure Profile Through Two Wells 
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DeepONets U-NO GNO

2320 psi

1885 psi

2030 psi

2175 psi



Test Case 1, t=10, y=21, z=2 showing XY

Pressure Prediction Comparison to Ground Truth
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• Three approaches performed 
well on pressure prediction

• The different models work 
better in different regions, 
indicating that a model 
ensemble may do better than 
any of the individual models



Test Case 1, t=10, y=21, z=2 showing XZ

Saturation Prediction Comparison to Ground Truth
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• Saturation is harder to predict than pressure due to large amount of 
zero points and not a lot of variation

• One of the models, U-NO, had reasonable saturation performance 
(see below), and we are currently investigating issues with other 
models’ predictions



Summary
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Three methods were able to predict pressure with 
performance similar to other ML methods

Different model architectures complement each other in 
prediction results

The next step is to test operator learning’s generalizability by 
testing different operation conditions



Questions?
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