

Developing CO₂-EOR and Associated Storage within the Residual Oil Zone Fairways of the Powder River Basin, Wyoming

DE-FE0031738

Dr. Eric Robertson, P.E.

Enhanced Oil Recovery Institute, University of Wyoming

Enhanced Oil Recovery Institute

Presentation Outline

- 1. Project Overview
- 2. Project Background
- 3. Technical Approach
- 4. Current Project Status
- 5. Next Steps

Project Overview: Key Participants

Contango

School of Energy Resources Enhanced Oil Recovery Institute

Project Overview: Objectives

- 1. Characterize the residual oil zone (ROZ) fairway at Salt Creek
 - Establish a Field Laboratory in ROZ fairway

DOE: \$2.8 million Cost share: 1.6 million

- 2. Review of mechanisms of ROZ-associated CO₂ storage
- 3. Examine alternative CO₂ injection and storage strategies
- Determine economic viability of the combined CO₂-EOR and CO₂ storage in the Salt Creek ROZ

Project Background: Salt Creek Field

- 1.7 billion bbl oil originally in place
- 732 million bbl produced from 4000+ wells
- CO₂-EOR since 2003
- WC1 and WC2 are main producing formations
- Potentially extensive ROZ in WC1

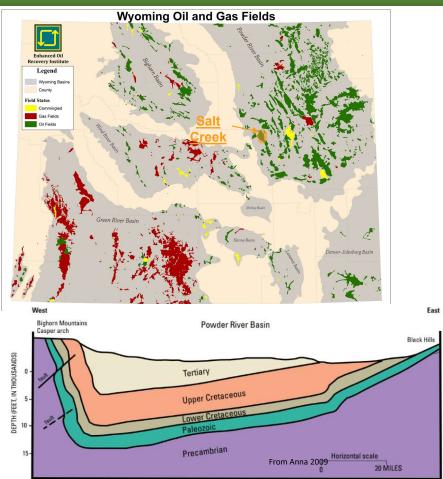
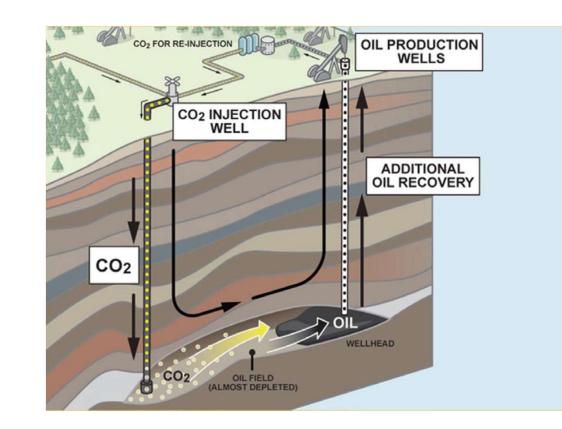
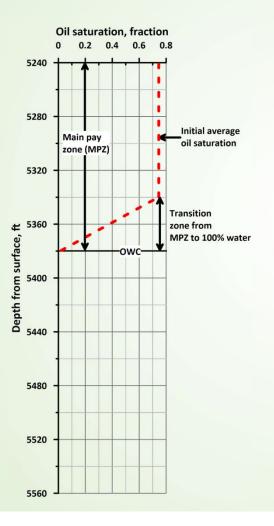
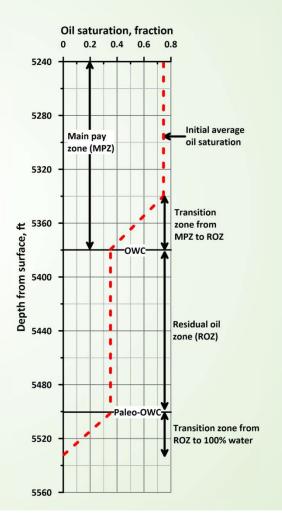



Figure 2. Generalized east-west cross section of Powder River Basin showing a west side basin axis. Black Hills monocline is shown in Cretaceous and Paleozoic rocks on east side of basin.

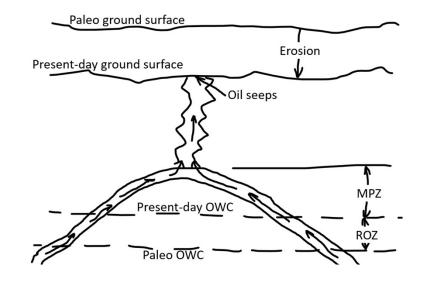

Background: Importance to DOE Program Goals

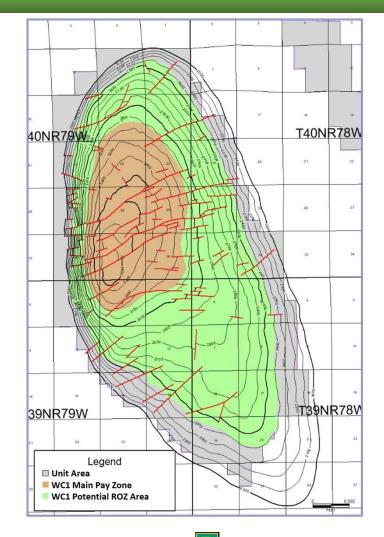
- CO₂-EOR
 - Squeezes out additional, hard-to-recover oil
 - Permanently stores CO₂ underground
- ROZ CO₂ Storage Project
 - Quantify new and potentially large sequestration opportunities
 - Determine economic viability



What is a Residual Oil Zone (ROZ)?

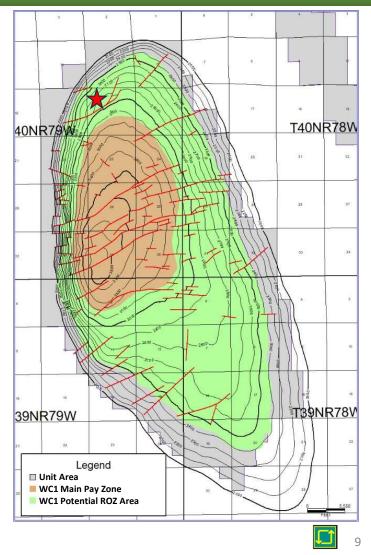
Conventional (no ROZ)

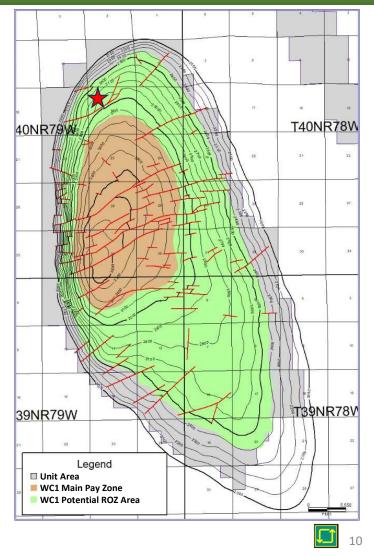

Field with associated ROZ



Salt Creek Field – Potentially Extensive ROZ

Conceptualized Formation of Type II ROZ at Salt Creek Field


- 1. Paleo trap formed and charged
- 2. Loss of overburden due to erosion
- 3. Reservoir pressure exceeds seal integrity
- 4. Oil seeps to surface as reservoir pressure equilibrates with new overburden stress and reservoir seal
- 5. New OWC established at bottom of MPZ
- 6. ROZ established between new OWC and paleo OWC


Technical Approach: Establish a Field Laboratory

- The Field Lab consists of
 - Geologic model
 - Reservoir numerical model
 - Physical well (core, logs, and fluids)
- Preliminary geologic model is complete
- Preliminary reservoir model is complete
- Well to be drilled, logged, and cored in early October 2023

Current Project Status: Reservoir Modelling

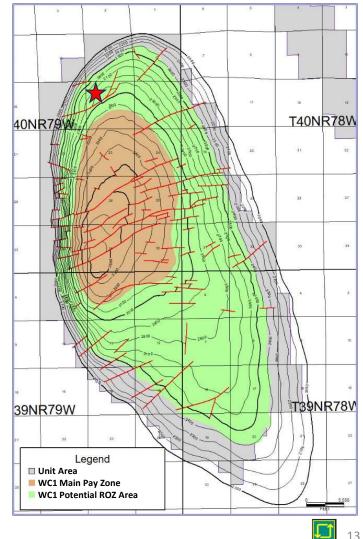
- Single-well numerical CMG-GEM model
- Reservoir and fluid properties obtained from companyprovided, pre-existing data
- ¼ pattern for a 20-acre 5-spot model
- Modeled hypothetical primary, secondary, and CO₂-EOR (wateralternating-gas) with CO₂ storage

Preliminary Modeling Data and Results at Field Lab Site

	Parameter	Value	Units
Inputs	Depth from surface	1570	ft
	Thickness	128	ft
	Permeability	28	mD
	Porosity	0.16	fraction
	Water Saturation	0.64	fraction
	Reservoir Pressure	728	psia
	MMP	1290	psia
	Oil-in-place (OIP)	273	million STB
Results	Recovery factor	0.20	fraction
	Gross CO ₂ Injected	0.42	Mt

These results will be reevaluated and updated based on analysis of logging, fluid sampling, core analysis, and coreflooding data (Mt = Mega tonnes = million metric tons)

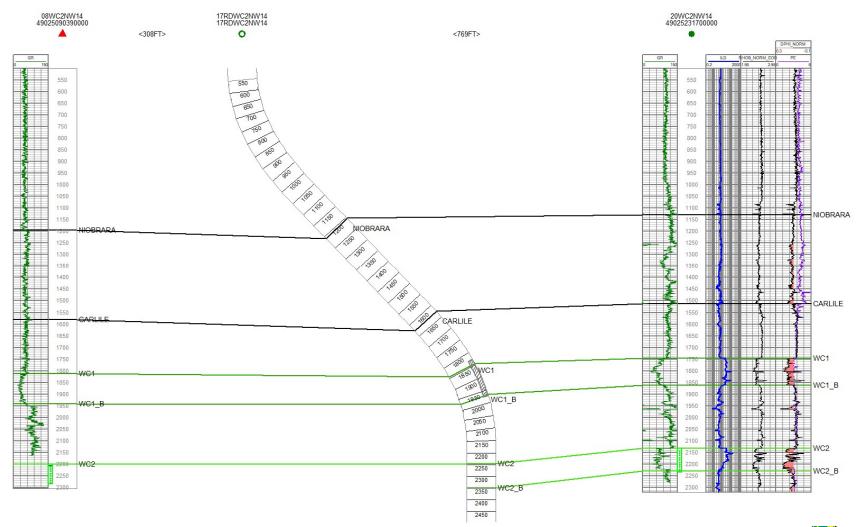
Project Status: New Field Operator


Onboarded new Field Operator

- Contango Resources new operator of the Salt Creek Field
- Received commitment letter from Contango in June 2022
- Submitted APD in January 2023
- Expect approval of permit in September 2023
- Plan to drill, core, and log Field Lab well in October 2023

Project Challenges

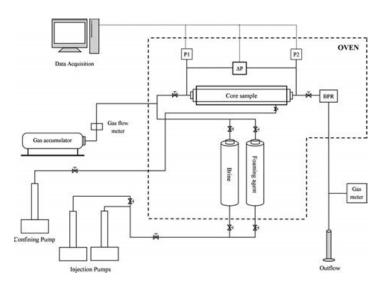
- Timeline: Project is behind original schedule
 - Originally a 2-yr project: Nov 2019 through Sep 2021
 - Change in field ownership
 - Location of Field Lab was an issue
 - Oil price collapse in 2020
 - Three changes in Project Leadership
- Technical: In situ saturations are uncertain
- A huge help: DOE project management



Next Steps for Project

- Drill new well in early-October
 - Mid-September: BLM approval for new well
 - Collect new core
 - 180 ft of 4.5-in.
 - Carlile Shale (seal)
 - WC1
 - bottom shale
 - Log well and sample downhole fluid

Next Steps for Project – Wellbore Crossection



JJ

Next Steps for Project

- Describe core, identify facies
- Routine and special core analysis
- Tie core data back to well logs
- Perform laboratory CO₂ core floods
- Build-out geologic model to regional area
- Forecast oil recovery and storage with updated dynamic model

Next Steps After Project Ends

- Salt Creek operator may develop the ROZ for oil recovery and CO₂ storage
- Disseminate results
- Work with operators in Salt Creek trend to assess ROZ potential

Questions?

School of Energy Resources

