Management of Site-Scale Leakage Risk

Mohamed Mehana

2023 FECM / NETL Carbon Management Research Project Review Meeting

August 28 - September 1, 2023

Acknowledgment

Lawrence Livermore National Laboratory

LANL: Bailian Chen, Meng Meng, Mohamed Mehana

LBNL: Abdullah Cihan, Chris Doughty, Pramod Bhuvankar, Tayo Omosebi

LLNL: Jaisree lyer

NETL: Brian Strazisar, Gavin Liu, Greg Lackey, Nate Mitchell, Robert Dilmore, Veronika Vasylkivska. Paul Holcomb

PNNL: Christopher Brown, Diana Bacon, Seunghwan Baek, Maruti Mudunuru

Tools to Manage Subsurface Risks

Objective: to demonstrate and improve the utility of NRAP integrated assessment model and workflows for GCS leakage and containment decision-making

NRAP-Open-IAM Updates

Latest release: August 2023 (https://gitlab.com/NRAP/OpenIAM)

New Components Released

- Generic Reservoir
- Fault Leakage
- Hydrocarbon Leakage

Components Updated

- Lookup Table Reservoir (3d interpolation; h5 data format)
- Plume Stability (3d interpolation; h5 data format)

New Developments: User Interface

Control File Interface

(New) Workflow section

- Risk-based Area of Review (AoR)
- Total time to the first detection (TTFD)

Visualization capabilities

- AoR
- TTFD
- Stratigraphy plots
- Time series plots *
- Sensitivity analysis *
- 2d plots *

* Updates of the existing capabilities

Los Alamos

NATIONAL LABORATORY

Connections Between NRAP Tools

Development of Functionality and Workflows

Well Leakage Modeling Workflows

- One-page fact sheet describing well leakage modeling in NRAP Open-IAM
- Aids model selection and well permeability assignment
- Will be available online and in user manual

JATIONAL

ECHNOLOG

L

BERKELEY LAE

NRAP tools and bowtie risk analysis

Objective:

Increase utilization of NRAP tools by the carbon geologic storage (CGS) community

Approach:

Demonstrate how NRAP tools can complement these risk assessment methods

Lawrence Livermore National Laboratory

Los Alamos

Pacific Northwest

NATIONAL LABORATORY

NATIONAL

ECHNOLOG

BERKELEY LAB

Area of Review Comparison

- Original AoR had an area of 3,780 km²
- Revised (2015) AoR has an area of 461 km² or ~12% of the original AoR
- NRAP-Open-IAM AoR has an an area of 102 km² or ~3% of the original AoR
- An AoR based solely on the TDS & CO₂ plumes has an area of 28.5 km² or ~0.8% of the original AoR

LOS Alamos NATIONAL LABORATORY

Multisegmented Wellbore ROM

- Leakage of CO2 and brine through cemented wellbores
- Leakage into multiple impermeable caprock layers and permeable aquifers
- Overcomes deficiencies of the analytical multisegmented wellbore ROM using ML/DL-based approach

Caprock Segment Wellbore Model

Data set	Classification ¹⁾ Accuracy	Regression ²⁾ Mean Squared Error ³⁾
Training	0.9990	9.2302e-05
Validation	0.9988	2.8170e-04
Testing	0.9991	2.0172e-04
¹⁾ The numbers of data set for training, ²⁾ The numbers of data set for training.	validation and testing are 737,713, 229 validation and testing are 290,754, 89,3	,779 and 50,921, respectively. 316 and 20.004, respectively.

3)Unit: log10(kg/s)

*Accuracy and mean squared errors for training and validation are at 200th epoch

.....)Ĥ

BERKELEY LAB

-2

Caprock Segment Wellbore Model

Model Application

Lawrence Livermore National Laboratory

The Effect of Hydrocarbons on the AoR

- Study the effect of initial conditions with hydrocarbons on the extent of the AoR
- Use simple, generic models
 - Depth 1900 m
 - Thickness 300 m
 - Porosity
 0.08
 - Permeability
 10 mD horizontal, 1 mD vertical
 - Reservoir pressure 15.7 MPa
 - CO_2 injection rate 41 kg/s = 3500 T/day
 - Injection duration 40 years
- Compare P(r) to P_{crit}: r_p is where P(r)<P_{crit}
- Maximum extent of gas phase determines r_{gas}
- Extent of the AOR is the greater of r_p and r_{gas}

Los Alamos

Pacific Northwest

Lawrence Livermore

BERKELEY LAB

National Laboratory

AOR dependence on Initial Conditions

Reduced order model for hydrocarbon fields

Input parameters	Ranges		Units
	Minimum	Maximum	-
Reservoir depth	3000	9000	ft
Aquifer depth	200	2000	ft
Reservoir pressure multiplier	1.0	1.2	-
Wellbore permeability	0.01	1000	mD
Average water saturation	0.2	0.8	-
FC _{light}	0.05	0.3	-
Fc _{intermediate}	0.05	0.3	-
Fc _{heavy}	0.05	0.3	-
Time	0	1000	year

Leakage profile for hydrocarbon fields

Leakage through Uncemented Annuli

The multi-segmented well leakage ROM in NRAP Open-IAM doesn't account for leakage through uncemented, open annuli.

Methodology:

- Reservoir & Aquifer flow model: Using Multiphase Darcy flow capabilities of TPFLOW
- Uncemented annulus: Using a simplified Drift-flux model or a liquid column model.

Integration of SALSA into NRAP Open-IAM

Semi-Analytical Leakage Solutions for Aquifers (SALSA) is a FORTRAN77 code that calculates pressures in a multiple aquifers-aquitard system, along with cumulative leakage rates in individual leaky wells.

We are creating python wrappers of SALSA to enable integrating it into NRAP Open-IAM as a new feature SALSA Python, t = 7300 days

Lawrence Livermore

BERKELEY LAE

National Laboratory

Los Alamos

Pacific Northwes

Leakage Through Wellbore Microannuli

·····

NATIONAL LABORATORY

Thank you! mzm@lanl.gov

