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Overall Project Objectives

Key questions

* How easy CO, can leak into a caprock fault?

» How does CO, change the coupling
between fault rupture and leakage Concept
at the tens of meter scale?

Field scale controlled
CO, leak in a slipping fault
affecting a caprock analogue

« Can we improve the monitoring?
Through the development of DCS optical fibers

End Product

Relating DCS and other monitoring
Signals to CO, leak, fault slip
and seismicity



Mt Terrl Testbed A Thick Fault Zone
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MtTerri Fault Injection Experiments
in a Caprock Analog - Summary

18 Publications so far

FSB project FSC project
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FSC Project

— DOE funded follow-up project to FSB

— Started August 1, 2021 — End September 30, 2024

* Experiments of fault reactivation with CO, fluids
* DCS (Distributed Chemical Sensing) Fiber Development

* Advanced modeling of fault leakage and induced seismicity

— Project Participants
* Y. Guglielmi, PI and J. Birkholzer, Co-PI

 LBNL Team — J. Hammonds, Admin Asst; Chet Hopp Research Engineer; J. Rutqvist,
Research Scientist; Paul Cook, Research Engineer; Florian Soom, Research Engineer; T.
Wood, Scientific Engineering Associate; Michelle Robertson, Program Manager; Yuxin
Wu, Research Scientist; ...

» Partnering with RICE University (Jonathan Ajo-Franklin, T. Shadoan)

And with Helmholtz Centre Potsdam — German Research Center (Veronica Rodrigues
Tribaldos)

— Integrated into Mt Terri consortium project and including
support/participation of multiple Mt Terri partners



New Monitoring Techniques

Different monitoring techniques are deployed to hydromechanically and chemically
characterize a leakage pathway created in an initially very low permeable fault zone

Time lapse imaging Passive induced seismicity
Of leakage flow path Pore pressures
Active seismic Fluid chemistry

(DCS-DTS fibers, continuous gas analyses)
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DCS Fibers

LBNL developed a Distributed Chemical Sensor (DCS) + Interrogator
coupled with a borehole fault 3D displacement monitoring
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Based on dye-based absorption cladding-
less optical fiber.

The difference of absorption of the
selected wavelength of light and
reference light are used to indicate the
CO, concentration change.

DCS prototypes were first extensively
tested at lab. scale before deployment in
the field experiment
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Characteristics of the 2023 CO, Injection

Pressure (bara)
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Injection of CO,g dissolved in water

Injection depth = 370m

Downhole temperature ~ 16.5 + 0.1 °C
Maximum pressure = [6.8 £ 0.2 MPa]

Injection flowrate = [5.3 £ 0.1 I/min]

Estimated total amount of injected CO, ~ 34kg
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Injection Protocol

Injection of CO, dissolved in water at high pressure (6 MPa)
and high flowrate (51/Min) to activate the fault

Pre-activation Activation Activation Post-activation
Characterization With With Characterization
STR and Pulse tests Water only Water + CO2 STR and Pulse tests
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Asymmetric Growth of a Leakage flow path

Effect of the fault stress heterogeneity
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Fault Hydro-Chemical Response
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Amplitude (V)
N

DCS Response to CO, injection

DCS signals looks affected by:
* Temperature and humidity during the water injection cycle
(This is also observed in the laboratory and can be corrected)
* Apparently correlates well with CO, partial pressure during the
dissolved CO, injection cycle
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displacement [ pm]

Fault Hydro-Chemical Mechanical Response

Significant decrease of fault slip when CO, gets in the fault,
while fault is still opening

partial pressure [kPal
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Partitioning of strain within the fault zone

during fault activation

1 - Estimating “bulk” fault thickness variation
from p-waves velocity and DSS fibers strains

» Fault figured as a layer of spheres T —
under poroelastic stress |

(contact theory used to estimate compliance) |
« Equivalent media theory used to estimate <
Variations in Vp velocities vs fault thickness
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e 2 - Fault thickness variation
versus fault slip

Local direct slip measurements with SIMFIP and DORSA probes
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Estimating fault thickness variation
from p-waves velocity and DSS fibers strains

Fault Normal Displacement U, from 3V,
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Most of fault dilation occurs at low slip magnitude (slip<0.0003m)

Fault thickness variation vs Slip

0.0003m is close to the friction slip weakening distance observed at lab. Scale!

A Fault Thickness

AB — Fault dilation dominates

BC

— Fault slip dominates

CO, penetrating the fault “apparently” kills fault slip
Potentially related to the change in fluid viscosity?
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Accomplishments To Date

We successfully performed one of the first field scale CO, fault activation experiment
Representative of CO, leakage in a fault affecting the overburden at a depth<800m

A scenario where pressurized formation fluids “pre-opened” the caprock fault
creating a flowpath for CO, leakage was observed at very high resolution

Injected CO,, “apparently” alters (“killed!”) fault slip
DCS prototype seems sensitive to CO, leak in a monitoring borehole

One paper published about induced microseismicity observed during the MtTerri
shale fault activations

JOURNAL ARTICLE
Induced microseismicity and tremor
signatures illuminate different slip
behaviours in a natural shale fault reactivated
by a fluid pressure stimulation (Mont Terri)

Geophysical
Journal
International

Volume 235, Issue 1
October 2023 Louis De Barros &, Yves Guglielmi, Frédéric Cappa, Christophe Nussbaum,
(In Progress) Jens Birkholzer

Geophysical Journal International, Volume 235, Issue 1, October 2023, Pages
531-541, https://doi.org/10.1093/gji/ggad231
Published: 07 June 2023  Article history v

<Previous  Next>



Synergy Opportunities:

Inform LBNL Project on Basin-Scale Storage Optimization
Using Geomechanical Studies

s ok Experiments show how important it is to relate
dilatancy/contractance
/J:\\ T —— with fault zone strain softening/hardening
1) and slip
'

/00002 00004 00006 00008 00010 00012 00014
Fault Slip [m]

Objective is to apply
such poro-plastic fault zone models
deduced from MtTerri experiments
to explore different modes of fault leakage
and aseismic-seismic response
in
the LBNL Project
On Basin-Scale Storage Optimization
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Organization Chart

. Team'members-and-their-role:q
Task-1:-Yuxin-Wu,-Research-Scientist-and-a-postdoctorant-1/SEA ‘researcher.q

Task-2:-Y.- Guglielmi, PI- and- Research- Scientist;- P.- Cook,- Scientific- Engineering- Associate;-
Postdoctorant-2;-Yuxin-Wu, ‘Research-Scientist-and-a-postdoctorant-1/SEA researcherq

Task- 3:- Y.Guglielmi,- PI'- and- Research: Scientist;* Veronica: Rodriguez-Tribaldos: Research:
Scientist, Chet- Hopp- Postdoc;-P.- Cook,- Scientific- Engineering- Associate;- F.: Soom,- Scientific-
Engineering: Associate; T.- Wood.- Scientific- Engineering- Associate;- Michelle: Robertson.,-
Program-Manager.|

Task-4:-Y.-Guglielmi,-PI-and-Research-Scientist;-J.-Birkholzer,-PI-and-Research-Scientist; - Chet-
Hopp- postdoc;- J.- Rutqvist,: Research: Scientist;- Julia- Correa,- Research- Scientist;- Veronica-
Rodrigues-Tribaldos, Posdoc-1-and-2.9

Task-5:-Y.-Guglielmi,- PI- and- Research- Scientist;- J.- Birkholzer,- PI-and- Research- Scientist;- H.-
Prieto,"Admin-Asst]




Gantt Chart

FS-C-experiment:
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