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Gigatonnes of CO, per Year

A Gigatonne CCS Future....
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A Gigatonne CCS Future....S
Status August 2023: More than 100 Class VI Permit A

eems to be Starting Now
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Evaluation of Potential CCS-at-Scale Impacts in 2009 IJGGC Paper

Study and Findings

* Modeling of a hypothetical CCS scenario in the Mt Simon
in the lllinois Basin (20 projects at 5 M tonnes/yr).

» Results clearly illustrated possible cumulative effects,
due to pressure interference between storage sites.

Recommendations

* Regional coordination may be needed in sedimentary
basins with multiple sites.

 Far-field characterization and monitoring (beyond
individual project areas) is important.

lllinois Northing (km)

» Long-term basin-scale impacts can be informed by earlier

lllinois Easting (m)

site-specific monitoring. Thickness of Mt Simon

Birkholzer and Zhou, IJGGC, 2009



Class VI Permit Applications: Cumulative Impacts

Additional

Cumulative AOR Character.iza.tion
and Monitoring

AOR 3 / Needs?
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Direct fluid pressure
effects of injection
(fluid pressure
diffusion)

Permeable
reservoir/
aquifer

Induced Seismicity and Caprock Integrity Concerns

Changes in solid stress
due to fluid extraction or injection
(poro-thermoelastic effects,
changes in gravitational loading)

vhby

Increase in pore
pressure along
fault (requires
high-permeability

pathway)

Ellsworth, 2013

Permeable
reservoir/aquifer

Change in loading
conditions on fault
(no direct hydrologic
connection required)

Strong Earthqu

in a Gigatonne CCS Future
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akes Triggered by Wastewater Injection

GSA Critical
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Seal Integrity Issues and Potential Leakage Pathways
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Understanding Seal Integrity:
Controlled Fault Injection Experiments (FWP-FP00013650)
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Passive Observations:
Long-term post-injection evolution of
fault permeability

¥

Reactivation of shale faults can
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Overall Objective: Develop a Framework for Basin-Scale Storage
Optimization Based on Geomechanical Studies

Seal Integrity Felt or Damaging Earthquakes
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Key Objective 1 - Predicting Geomechanical Impacts

Transfer fault geomechanics knowledge derived from small-scale in-situ research experiments
and/or pilot/demonstration to larger injection volumes and scales so that we can simulate with
confidence important geomechanical effects at the scale of large storage projects.

Predictions of Basement-Reservoir-Caprock Behavior at
Project Scale ok ¥

TS, Sy - F ault with damage zone
CO; injection well 3 | COrinjection well 2
CCS1
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10km Demonstration Experiments

and Analogs

Decatur

Mont Terri Fault Slip Studies (Cappa et al., 2022)

Meso-Scale Experiments

Subtask 1.1: Identifying key physics of caprock, reservoir and basement faults
Subtask 1.2: Physics-based modeling of fault physics at the project scale
Subtask 1.3: Testing interferences between multiple CO, storage injections and faults
Subtask 1.4: Knowledge transfer and handover to basin-scale models



Key Objective 2 - Assessing Basin-Scale Constraints

Gain a sound understanding of the basin-scale impacts (including geomechanical ones) of a
gigatonne CCS future, and develop a flexible workflow for simulation and optimization that can be
handed over to institutions tasked with regional CO, storage hub planning.
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» Basin-scale flow models with
simplified mechanics

* Hypothetical scenarios for storage
hubs and gigatonne CCS future
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Subtask 2.1: Develop computational framework for basin-scale modeling and optimization
Subtask 2.2: Apply the framework to generic basins and future storage scenarios

Subtask 2.3: Assess strategies for optimized injection, brine extraction and monitoring

Subtask 2.4: Handover of demonstrated framework to potential users



Integration between Geomechanical and Basin-Scale Models

Advanced Fault Geomechanical Basin-Scale Simulation and Optimization With
Modeling at Project Scale Multiphase Flow and Simplified Mechanics
!
Project 3
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Preliminary Activities
(Examples)



Geomechanics: Modeling Fault Physics at the Project Scale

Starting with a scenario observed in the field at Mont Terri and at basin scale (Eyre et al., 2019)

« Can pressure increase in the storage reservoir
activate slip on a fault that is rooted in the basement
and intersects the overlying seal?

- Can such event lead to permeable pathways through ~ Depth
the overlying seal?

We use two complementary fully coupled numerical
approaches:

* TOUGH-FLAC - THM solver with multiphase capabilities
Friction laws (Mohr-Coulomb with slip-weakening friction) and
simplified seismic predictions (seismicity rate through an external
python in house routine) 3 km

RN CO2 storage

+ 3DEC - HM solver single phase fluid flow
Friction laws (Mohr Coulomb with slip-weakening friction, rate-and-
state, Cam-Clay) and advanced seismic predictions (earthquakes
location, source parameters)
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TOUGH-FLAC Modeling with Mohr-Coulomb & Slip-Weakening Friction

Starting with 3-D simulation of a single moderately permeable fault with
homogeneous properties embedded into a 4 km x 6 km x 2 km volume

TOUGH-FLAC3D
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Shear Strength of the Fault Decreases Due to Pore Pressure Increase

Pa
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Depth (m)

-500

-1000

-1500

Failure Is Initiated At the Bottom of the Reservoir

-2500

Stress (MPa) Slip (m)
]
caprock . caprocl;ew&eﬁ)
Nucleation at the
bottom tip of the
fault in the reservoir
shear strengthe
shealr stress o . . . . ‘
-2 0 2 4 6 8 1.2 -015 -0.1 -0.05 0 0.05

4

stress (MPa)

Slip (m)

Permeability (m2)

1.7681E-16
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1.6000E-18
1.5200E-16
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Heterogeneous Fault Properties Can Drastically Change Slip Behavior:
Clay-Rich Fault Zones in Contact with Seal Layers

Heterogeneous with
Clay-Rich Fault Zones
in Contact with Seal
(Black and orange)

Depth (m})

Previous Case with
Homogeneous Fault
(Green)

-500
Case 1
Case 2, set 1 —a
Case 2, set 2
caprock
-1500
-2000
-2500 L L
-0.15 -0.1 -0.05 0

Slip (m)

0.05

I 1.0000E+00
9.0000E-01 .
8.0000E-01 CO, saturation
7.0000E-01
6.0000E-01
5.0000E-01 Seal fault
4.0000E-01
3.0000E-01
2.0000E-01

I 1.0000E-01
0.0000E+00

Permeability in caprock fault
increases from = 1079 to = 1076 m?



Next Steps: Sensitivity Study and Complex Fault Scenarios

Influence of fault geology/geometry

» Length, thickness, shape, throw distribution, offset
»  Multiple faults

» Size and shape of the fault rupture patch

»  Depth of the rupture

Influence of state of stress and its

perturbation by basin layering

» Isostatic, normal regime, strike-slip, thrust regime

» Effect of tectonic strain rate

+ Stress heterogeneity related to fault frictional
heterogeneity and to vertical stress perturbations

Fault constitutive laws coupled to fault

permeability
»  Brittle behavior — Mohr-Coulomb with slip weakening
and associated permeability law
- Initial fault permeability + slip dependent permeability
variation in reservoir and basement
- No initial fault permeability + failure dependent
permeability in caprocks
»  Brittle-ductile behavior
- Mohr-Coulomb (faults) and Cam-Clay (intact rock) to
represent effect of matrix bulk ductility
- Cam-Clay everywhere to explore fault ductility
- Cam-Clay for sealing units, Mohr-Coulomb for
reservoirs and basement
- Rate and state for comparison

CO, injection well 3

}

|

“COyinjection well 2

-

CO: injection »

Fault with damage zone

? Caprock

4= Injection layer

Underburden



Basin-Scale: Develop Efficient Computational Framework

How to simulate pressure and geomechanical effects in large basins with multiple projects?

Semi-analytical Model (SALSA-Poroelasticity)

- Multilayered poroelastic model to predict pressure
changes and stress perturbations

- Possible to extend the approach for including fault =
barriers and heterogeneities

- Best for automatic optimization studies

Injection wells

2

Major fault = ~**

000000

000000

ooooo

e Simplified Numerical Model =

- A 3-D coupled linear elasticity and flow model
(Finite Volume Method-based)

- Best for basin-scale studies with multiple
simulations needed (e.g., sensitivities)

* High Performance Full-Physics Simulation

— Needed as ground truthing for simplified
models




Example Application to a Generic Basin: Major Fault at 20 km

How much and for how long can be injected before the fault is activated?

20000

y (m)

-20000

-40000

-20000

X (m)
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Example Application to a Generic Basin: Major Fault at 12 km

How much and for how long can be injected before the fault is activated?

20000

y (m)

0
x (m)

Shear Stress (MPa)

initial

1 Mtly (20 y)

1.5 Mtly (30 y)

1.5 Mt/y (20 y, fault at 12 km)

20
Effective Normal Stress (MPa)

Fault permeability ~ 10- m?
Inj reservoir perm ~ 103 m?
Caprock perm ~ 10 m?

-40000  -20000 0 20000 40000
x (m)



Next Steps

 Develop Computational Framework

- Continue development of simplified basin-scale poroelastic models with improved fault
physics representation

- Couple forward models with the optimization tools
- Continue numerical experiments and compare results with full-physics simulations

« Apply the Framework to Generic Basins and Future Storage Scenarios
- Examine basin-scale pressure impacts over a range of storage scenarios
- Simulate geomechanical response for representative fault distributions

« Assess Strategies for Optimized Injection or Brine Extraction

- Apply optimization tool and the developed models to explore basin-scale pressure
management approaches for the selected basin systems

- Explore basin-scale monitoring strategies
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Wrapping Up
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Accomplishments to Date

Presented Today
» Conducted 3-D fault modeling at project scale, using Mohr-Coulomb with slip weakening
friction and permeability change, and started with a comprehensive sensitivity study

» Developed and tested effective flow and simplified geomechanics approaches (analytical
and numerical) for basin-scale simulation and optimization

Not Presented Today

» Finalized a comprehensive literation and data review, to identify key faults physics
(reactivation mechanisms, permeability change) in reservoir, seal, and basement rocks

» Tested alternative fault modeling approaches using 3DEC and applied other constitutive
relationships for fault reactivation (rate-and-state, Cam-Clay)

« Evaluated seismogenic index as an alternative handover mechanism between detailed
geomechanics modeling and basin-scale assessments

« Started developing representative basin-scale CCS scenarios (based on existing
hydrogeologic systems and expected CCS development in the US)

« Started conversations with EPA Class VI team
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Thank you for your attention
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Key Team Members and Roles

Task 1: Project Management and Planning
« Jens Birkholzer, LBNL, Principal Investigator (PI)
« Susan Sprinkle, LBNL, Project Administrator

Task 2: Geomechanical Modeling

Yves Guglielmi, LBNL, Co-Lead Task 2

Jonny Rutqvist, LBNL, Co-Lead Task 2

Frederic Cappa, Géoazur, University of Nice,
Geomechanical Simulations

Hafssa Tounsi, LBNL, Geomechanical Simulations
Utkarsh Mital, LBNL, Geomechanical Simulations
Meng Cao, new post-doc starting 9/1/2023

Cross-Cutting Task 2
Stanislav Glubokovskikh, LBNL, Simplified Fault
Mechanics to Inform Basin-Scale

Task 3: Basin-scale Optimization

» Abdullah Cihan, LBNL, Co-Lead Task 3 for basin-
scale optimization

+ Matt Reagan, LBNL, Co-Lead Task 3 for basin-
scale simulation

Cross-Cutting Task 3
* Preston Jordan, LBNL, Representative Modeling
Scenarios
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Task 2: Geomechanical Modeling

Use the best-available experimental data/findings and new conceptual model/simulation
approaches to assess CCS@scale scenarios

Subtask 2.1: Identifying key physics of caprock, reservoir and basement faults

We will first conduct a bibliographic review to extend the knowledge on the differences between basement, reservoir and
caprock faults based on available field observations. This task will specifically include an attempt to generalize the Mont Terri
experiment observations, and to isolate the key properties that must be considered to best describe the rupture and associated
leakage potential.

Subtask 2.2: Modeling fault physics at the project scale

We will simulate the geomechanical response in basement, reservoir and caprock systems for a range of fault models and
stress regimes, considering various injection scenarios. We apply continuum TOUGH-FLAC and discrete 3DEC models.

Subtask 2.3: Testing interferences between CO, storage projects and faults

We will test different project scenarios in order to explore under what conditions carbon hubs with large individual or multiple
interfering projects may trigger fault seismic instability and leakage. We will consider a modeling portfolio of synthetic CO,
injections scenarios and hydrogeomechanical conditions representative of actual field situations.

Subtask 2.4: Knowledge transfer and handover to Task 3

We will translate the sophisticated geomechanical simulations for use in Task 3. The simplest handover to the basin-scale
storage optimization in Task 3 would be geomechanical constraints (such as maximum pressure) in critical zones with fault
structures that would be prone to seismic rupture and/or caprock leakage if the maximum pressure was exceeded. At the next
level of sophistication, we plan to upscale the complex physics of minor invisible faults as well as major seismically visible faults
to generate a set of a priori distributions of the geomechanical risks.



Task 3: Basin-Scale Simulation and Optimization

Gain a rigorous understanding of the basin-scale impacts of a gigatonne CCS future, and
develop a flexible and demonstrated simulation and optimization workflow that can be
handed over to institutions tasked with regional CO, storage hub planning

Subtask 3.1: Develop computational framework for basin-scale modeling and optimization

We will first identify efficient flow and geomechanics models of varying fidelity that can be used with reasonable accuracy for
the basin-scale optimization studies. We will also generate an updated optimization framework/code with new stochastic
algorithms that are linked to these computationally efficient forward models selected.

Subtask 3.2: Apply the framework to generic basins and future storage scenarios

We will evaluate how multiple projects in large basins can be best deployed spatially and temporally to meet the demands of
massive CCS deployment, considering basin-scale geomechanical effects.

Subtask 3.3: Assess strategies for optimized injection as well as brine extraction

We will assess how basin-scale scenarios with very large pressure increases and high geomechanical risks can be managed
by smart spatiotemporal optimization of injection and extraction wells. The subtask will inform how to place brine extraction and
injection wells in the basins with minimized number of wells and extracted brine.

Subtask 3.4: Handover of demonstrated framework to potential users

We will explore how the demonstrated simulation and optimization workflow for basin-scale optimization can be used by
institutions tasked with regional CO, storage hub planning. Two options will be tested with selected planning institutions as
follows: (1) The first option is to transfer the basin-scale models initially developed by LBNL for further use by the basin-scale
planning institution. (2) The second option is to task LBNL, and other national labs, with the development and execution of
basin-scale simulation in support of the planning institution.



Gantt Chart with Milestones and with Go/No-Go Decisions

Planned
. Completion
. o Fiscal Year 2023 FY24 | FY25 pet Sl ]
Task Milestone Description (Reporting explanation of
deviation from plan)
Q1 Q2 Q3 Q4

- . Title: Identifying key physics of caprock, Jun 30, 2023
LB e e (o) reservoir and basement faults S (Jul 31, 2023)

. y Title: Physics-based modeling of fault processes Mar 31, 2024 " g .
Milestone 2-2 (B) at the project scale X (Apr 30, 2024) Go/No-Go decision

. g Title: Testing interferences between CO, storage Dec 31, 2024
Milestone 2-3 (C) PSRN PN X (Jan 31, 2025)

- Title: Knowledge transfer and handover to basin- Sep 30, 2025
LGS () scale simulation and optimization studies X (Oct 31, 2025)

- Title: Computational framework for coordinating Mar 31, 2024 N g -
Ll el and optimizing storage at the basin scale. 2 (Apr 30, 2024) ERNEED R

. Title: Evaluation of key constraints for basin- Dec 31, 2024
Milestone 3-2 (F)  [uuimssnm X (Jan 31, 2025)

. y Title: Strategies for increased storage security Jun 30, 2025
LG RS ) and capacity X (Jul 31, 2025)

. Title: Handover of demonstrated basin-scale Sep 30, 2025
LA ) a)) optimization framework to potential users 2 (Oct 31, 2025)

Go/No-Go Decision Point 1: Demonstrate physics-based modeling of fault behavior at project scale
* Milestone 2-2, March 31, 2024, Project Month 18

Go/No-Go Decision Point 2: Demonstrate fast simulation of basin-scale processes for optimization
* Milestone 3-1, March 31, 2024, Project Month 18
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