Reservoir Properties and Storage Resource in the Central Gulf of Mexico

Jack C. Pashin, Justin Spears, Joshua Ademilola **Oklahoma State University**

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory. Cost share and research support are provided by the Project Partners and an Advisory Committee.

SECARB Offshore

Disclaimer

"This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendations, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Introduction

- What are key reservoir properties in the Central Gulf of Mexico?
- What are total storage resources in this region?

Objectives

- Geological Characterization based on 3D seismic, geophysical well logs, and reservoir data (Stratigraphy, sedimentation, structure, hydrodynamic analysis).
- Analyze reservoir properties, storage volumetrics, potential storage mechanisms, migration pathways, and
 reservoir integrity to develop geologic screening criteria.
- Understand temperature pressure regime and implications for geologic CO₂ storage and enhanced recovery.
- Determine regional storage resources using NETL static method.

SECARB: Offshore

Half Grabens and Salt Pillows, Ewing Bank shelfbreak

Diapiric Salt Bodies, Ewing Bank Shelfbreak

Roho and Minibasin, Green Canyon Area

Mars-Ursa Minibasin Complex

Massive Sandstone Auger Field

19,528 ft

Rippled, Convoluted Sandstone, GC 18

Convolute Mudstone Thunderhorse Field

Core diameter = 10 cm various sources **RB: Offshore**

Net Sand Thickness

Effective Porosity and Permeability

Porosity-Depth plot

Water Saturation vs. Permeability

SECARB: Offshore

Effective Porosity vs. Permeability

Relative Permeability Curves

SECARB: Offshore

Pliocene J1 and J2 reservoirs, Bullwinkle Platform, Green Canyon Block 65

What do relative permeability curves look like in a CO₂ storage system?

Original Temperature

Geothermal gradient (°F/1000 ft)

Geothermal gradient

Miocene: Tortonian-Messinian (11.63–5.33 Ma)

Sub-seabed pressure gradient (psi/ft)

Original Pressure Gradient

Miocene: Tortonian–Messinian (11.63–5.33 Ma)

Pliocene: Zanclean (5.53–3.60 Ma)

Storage Resource by Reservoir Age

Age	Age top (Ma)	Area (km²)	Avg. subsea depth (ft)	Average Temperature (°C)	Avg. pressure (Mpa)	Avg.CO ₂ density (g/cc)	P ₅₀ Storage resource (Gt)	
Pleistocene undiff.	0.001	36,807	5,268	56	20	0.75	36	
Pliocene (Piacenzian)	2.58	46.357	7.669	72	30	0.79	37	
Pliocene (Zanclean)	3 60	AA 373	9 4 2 8	83	37	0.81	36	176 G
Miocono (Tortonian Mossinian)	5.00	61 472	10 702	02		0.01	30	
	5.55	01,475	10,703	95	45	0.82	50	
Miocene (Serravallian)	11.63	36,650	10,372	84	47	0.85	37	
Miocene (Langhian)	13.82	2,714	16,575	118	82	0.89	45	
Miocene (Burdigalian)	15.97	108	21,792	148	113	1.10	81	
Cenozoic undiff.	0.001	10,772	23,563	93	108	1.00	157	
		,	,					
Cretaceous	66	2,351	13,985	126	46	0.72	14	
TOTAL							473	

Observations

- Shelf and slope have numerous storage/enhanced recovery options.
- Abundant high-quality reservoirs and sealing strata.
- Analytical criteria include many aspects of depositional style, structural style, hydrodynamics, geothermics, and routine reservoir properties.
- Fluid saturation and relative permeability important considerations-gas mobility higher in oil than water.
- Pressure-temperature field highly variable in shelf and slope.
- P₅₀ storage resource in each stratigraphic interval ranges from 14-81 Gt.
- Preliminary P₅₀ storage resource estimated at 473 Gt; 176 Gt in Serravallian-Pleistocene section.

