Experimental CO₂ Interactions with Fractured Calcite-Rich Shale Samples at Elevated Pressure

Magdalena Gill NETL Support Contractor

FECM/NETL Carbon Management Research Project Review Meeting Aug. 30, 2023

Gill, M., Moore, J., Brown, S., Paronish, T. and Crandall, D., 2023. Experimental CO₂ interactions with fractured Utica and Marcellus Shale samples at elevated pressure. Geoenergy Science and Engineering, 222, p. 211484.

CEME

EOR Performanc

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Magdalena Gill^{1,2}, Johnathan Moore¹, Sarah Brown^{1,2}, Tom Paronish^{1,2}, Dustin Crandall¹

¹National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA ²NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA

Problem Statement

Shales as seals

- Low permeability
- Fractures are primary leakage sources
- Shale deposition often marine
- Carbonate content common
- Shales as reservoirs

What is the impact of carbonate content on fluid flow through shale?

- Samples:
 - Marcellus and Utica Shale
 - 1 inch diameter, 2 inch length cores
 - Brazillian fracture
- Hassler style core holder
 - Temperature ~20 °C
 - Pore Pressure = 1,500 PSI
 - Confining Pressure = 1,700 PSI
- Brine injection over 14 days
 - 5% KI carbonated brine
 - 14 days of continuous exposure
 - Continuous flow 0.1 ml/min
 - Increased flow for permeability measurements

- Elemental composition Olympus Innov-X® X-Ray Fluorescence Spectrometer (XRF)
- Elemental mapping Thermo Scientific Scanning Electron Microscope (SEM) with Thermo Pathfinder Microanalysis
- North Star Industrial CT Scanner
 - CT Scan Resolution: 18.2 µm
 - Scaled by 50% for analysis effective Resolution: 36.4 µm
- TESCAN DynaTOM Micro CT scanner for detailed views of areas of interest at 16.2 µm

CT Scanning at NETL's Geocharacterization Lab

North Star Industrial CT Scanner:

- Workhorse CT
- Pore to core scale resolution range
- Scans at elevated temperature and pressure

TESCAN DynaTOM CT Scanner:

- Installed in 2021
- First of its kind in U.S.
- High-speed, high-resolution scanning
- Resolution ~10 microns

Image Processing

Image processing with Fiji/ImageJ

• Noise reduction, image scaling, cropping

Image segmentation performed with ilastik

- Supervised machine learning
- User defined labels
- Random forest classifier
- User-directed pre-filters and training

Calcite crystal

Stuart S, Rudy, M., Eren, K., et al. (2019) ilastik: interactive machine learning for (bio)image analysis, in: Nature Methods. Rueden, C. T.; Schindelin, J. & Hiner, M. C. et al. (2017), ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics 18:529

A Tale of Two Shales

Utica Shale

- Herrick 3H Well
- Monroe, OH (39.6572°N, 80.9847°W)
- Depth: 10,577.6 ft
- Point Pleasant Member
- Fossiliferous, gray, calcareous shale
- Higher Ca content more calcareous
- Lower Si content less silty

Marcellus Shale

- Outcrop exposure (unweathered rock)
- Bedford County, PA (40.1382°N, 78.5837°W)
- Union Springs Member
- Organic-rich, black, calcareous shale
- Lower Ca content less calcareous
- Higher Si content more silty

Findings: Different Dissolution Styles

Matrix Dissolution – Change Highlighted in White

- Utica: homogenous dissolution
- Marcellus: porous reaction rind

U.S. DEPARTMENT OF

Permeability and Dissolution Style

- Permeability *k* calculated from differential pressure across core
- Inclusion of reacted zone in Marcellus correlates well with rise in k
- $k_{\text{normalized}} = k_{\text{time}}/k_0$

SEM, Elemental Mapping, and XRF

SEM and EDS of Marcellus Shale

- Utica: more calcium-rich (higher carbonate content; limey)
- Marcellus: more silica-rich (higher siliciclastic content; silty)
- Ca depletion in reacted areas of both shales
- Si exposed wherever Ca dissolved away

Conclusions

Utica:

- Comparison of reactivity of:
 Marcellus: Low Ca / High Si
- Despite differences in dissolution, both show similar increases in fracture permeability
- A framework of silicious clastic grains facilitates creation of porous and permeable zones upon calcite dissolution
- Less calcareous shales may experience substantial Ca dissolution leading to increases in permeability comparable to those found in more Ca-rich rocks
- Calcite distribution in shale matrix influences local dissolution rates

High Ca / Low Si

• Porous zone has lower mechanical strength: potential for future geomechanical work?

Find more information about this study in:

Gill, M., Moore, J., Brown, S., Paronish, T. and Crandall, D., 2023. Experimental CO2 interactions with fractured Utica and Marcellus Shale samples at elevated pressure. Geoenergy Science and Engineering, 222, p. 211484.

Questions?

Marcellus Fracture at Experiment End

Marcellus Fracture and Reacted Matrix at Experiment End

Questions?

Questions?

Questions?

Marcellus Fracture at Experiment Start

Marcellus Fracture at Experiment End

Marcellus Fracture and Reacted Matrix at Experiment End

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

