

The Co-Saline Storage Method Accelerating Demonstration of Offshore CCS

C. Gabe Creason – Research Geologist <u>christopher.creason@netl.doe.gov</u>

Kelly Rose – Geologist & Geo-Data Scientist, PI Director of NETL's Science-based AI/ML Institute (SAMI) kelly.rose@netl.doe.gov

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

C. Gabe Creason¹, MacKenzie Mark-Moser¹, Scott Pantaleone^{1,2}, Lucy Romeo^{1,2}, Kelly Rose¹

¹National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA

²NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA

Opportunities for Offshore CCS

...many coincident with O&G operations

- Significant global potential for offshore CCS
- Green dots show existing CCS projects
 - coincide with many existing O&G operations
- Need a systematic method for ensuring *timely* yet safe, reliable implementation

Global map representing offshore geologic carbon storage locations (Choisser et al., 2023).

What is Co-Saline Storage?

A new approach for CS to defray costs, enhance benefits

- Concept of tapping into saline reservoirs overlying/underlying petroleum reservoirs to concurrently store CO₂
- Leveraging existing infrastructure
- Derive economic and information benefits from existing infrastructure, CS offset credits, and extending knowledge/data for these systems

How does Co-Saline Storage differ from Conventional Approaches?

A comparison...

- $\rm CO_2\text{-}EOR:$ $\rm CO_2$ injected into oil reservoir to decrease viscosity and increase flow (output)
 - (+) Improves petroleum recoverability
 - (-) Not long-term storage
- Exclusive CO₂ Storage: CO₂ injected into saline reservoir
 - (+) Favorable geologic setting
 - (-) Requires new infrastructure
 - (-) Requires dedicated financial investment

Co-saline CO₂ Storage: CO₂ injected into stacked saline reservoir while producing from HC horizons

- (+) Utilizes existing infrastructure
- (+) Long-term storage
- (+) Favorable geologic setting
- (+) Offsets costs
- (+) Leverages existing data and knowledge

Project Objective

Recoverv

within the domain of interest

Building Solutions on a Solid Foundation

https://edx.netl.doe.gov/offshore/portfolio-items/risk-modeling-suite/

Current Offshore Tools

Data and tools can be used individually or synergistically, and are configurable to meet applications for multiple uses & stakeholders

Support collaboration, real-time or near-real time analytics, and multiple spatio-temporal scales

Co-Saline Assessment Workflow To Date...

1. In situ Environment

3. Potential Hazards

EY23: Next Steps

Demonstrating, Documenting, and Validating the Assessment Workflow

- Wellbore assessment
 - Will having injection and production tubes cause issues with wellbore pressure?
- Geomechanical analysis
- Accessible **web interface** to conduct analytics using NETL-DOE tools
- Focused on offshore, but see **opportunity for onshore**

Assessing Economic Viability

Coordinate with NETL's Offshore Saline CS Cost Model Dev Team

Provide inputs for potential case studies to demonstrate economic viability

Evaluate cost factors such as:

- Distance from Shore
 - Longer pipeline
 - Travel distance
- Water Depth
 - More steel
- Plume area
 - Place onshore challenges under water
- Injection wells
 - Directional drilling

Key Project Outcomes & Impact

- Demonstration of a smart, Al-informed, advanced modeling approach to estimating cosaline storage resources and economic feasibility
- **Publication** of proposed hybrid approach to catalyze industry and regulatory interest
- Web interface that enables access to workflow, models, and tools to assess viability of co-saline storage in a given location

- Co-saline concept is **not limited to offshore** environment...
- Opportunity to **apply NRAP tools** to assess risk and economic viability
- Limitations to where this can be applied, but can serve to support transition, expedite CCS activities
- Beyond the technical and economical aspects, there are regulatory gaps that need to be addressed to enable this approach
 - Class II and Class IV, but unaware of regulation that links them

This work was performed in support of the U.S. Department of Energy's Fossil Energy and Carbon Management's Geo-Analysis and Monitoring Team and was developed jointly through the U.S. DOE Office of Fossil Energy and Carbon Management's Environmentally Prudent Stewardship FWP.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

C. Gabe Creason, <u>Christopher.Creason@netl.doe.gov</u>

Kelly Rose, <u>Kelly.Rose@netl.doe.gov</u>

DOE/NETL Tools Available for Application

Rank and compare multiple release scenarios

Spatially sum potential impacts and response

Forecast remaining lifespan of existing infrastructure

Oceanic fate and transport model

4D hvdrocarbon release model

ĴGΛ

Analyze ocean and geologic hazards

Predict unknown faults or fractures that could pose risk of leakage pathways

Analyze subsurface property trends

Estimate prospective CO₂ Storage Volume

Conceptual Framework for Evaluating Data and Knowledge Gaps

Data Availability		
Well Properties	Surface location	
	Bottom hole	
	Location	
	Directional survey,	
	TVD	
	Spud date	
	Status	
	Production type	
Petrophysical logs	GR, SP	
	DT, Vp, Vs	
	RHOB	
	NPHI	
	Resistivity	
	Caliper	
	PEF	
Seismic	2D/3D	
Core Analysis	Lab measurements	
	Photos	
Engineering Data	Drilling data	
	Production data	
Supporting Infrastructur	r e Wells	
	Pipelines (CO2)	
	Platform	

Supporting Geology	
Proven Permanence	Duration?
Suitable Reservoir(s)	Stacked?
	Net thickness
	Lithology
	Lateral continuity, extent
	Faulting
Suitable Seal(s)	Thickness
	Lithology
	Bulk density
	Lateral continuity, extent
	Fracturing
	Faulting
Enclosure	Stratigraphic?
	Structural?
	Combo?

Supporting Infrastructure	
Wells	Location
	Status
	Production type
	Spud date
Pipelines	Location
	Connectivity
	Туре
	Age
Platforms	Location
	Туре
	Age

