# Low Risk Strategies for Geologic Carbon Storage (FWP-1022403)



**Wei Xiong, Burt Thomas, Zineb Belarbi,** Dustin Crandall NETL RIC Wei.Xiong@netl.doe.gov



#### **Disclaimers**

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through site support contracts. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractors, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



Actual research done by:

- Wei Xiong, Zineb Belarbi,
   and Burt Thomas from
   NETL RIC
- Ryan Klapperich and Merry Tesfu from the EERC

It's just my honor to present this update for them today.







- Carbonated brine storage is a low-risk geologic CO<sub>2</sub> sequestration strategy.
  - The dissolved CO<sub>2</sub> concentration is affected by salinity, reservoir pressure and temperature. By selecting an appropriate CO<sub>2</sub> molality at the surface and subsurface, we can ensure minimal free-phase CO<sub>2</sub> in carbonated produced water for storage.
- Wellbore corrosion rate has been anticipated to be at an acceptable range to maintain operations for a carbonated brine injection.
  - Scale minerals can precipitate from carbonated produced water and further reduce corrosion rate. Adding CO<sub>2</sub> to produced water for injection is less likely to pose significant impacts on the existing wastewater disposal wells.
- CO<sub>2</sub> remained in liquid phase in long-term storage.
  - Small amount CO<sub>2</sub> converts to carbonate minerals in sandstone reservoir. CO<sub>2</sub> is safely stored via dissolution sequestration.



#### **Project Summary**



- **Project Summary:** Three year effort to develop a plan for carbonated brine injection, with an end goal of a path for pilot scale implementation.
- **Updates:** Reservoir modeling, wellbore materials compatibility and corrosion modeling, reactive transport modeling.

20 years of carbonated produced water injection, following long-term (100 years) of storage in a sandstone reservoir.



**Reservoir modeling** 





CO<sub>2</sub> fate in reservoir



- Reservoir Flow Modeling
  - Model parameters determined from applicable past field operations.
- Wellbore corrosion modeling
  - Examination of corrosion rates and scaling anticipated for a range of brines, NGL wellbore materials and CO<sub>2</sub> saturations.
- Reactive Transport Modeling
  - Changes in system interrogated from CO<sub>2</sub> injection scenarios.



CHNOLOGY



Carbonated Brine Disposa

Proposed Carbonated Brine Injection Method via UIC Class II Well



### **Reservoir Model Overview**

- The simulation was built using Computer Modelling Group (CMG) GEM reservoir simulation software.
- Reservoir depth: 4,700 ft
- Reservoir thickness: 300 feet
- Simulation block widths in the I and J direction: 101\*101
- Simulation cell size: 10\*10-ft with a cell thickness of 10 ft (K).
- Number of layers: 40
  - Mowry Formation, 5 layers
  - Inyan Kara Formation, 30 layers
  - Swift Formation, 5 layers
- Input data: geologic and reservoir data

- For simplicity, model parameters are considered as homogeneous
- The reservoir was assumed to be 100% brine saturated
- Porosity and permeability data extracted from larger BEST model
  - Porosity 23%
  - Horizontal permeability is 284 md; vertical permeability 10% of the horizontal permeability



### **Simulation Input Parameters**

| Constant Parameters                                                          |                 |  |  |  |  |  |
|------------------------------------------------------------------------------|-----------------|--|--|--|--|--|
| Injection Rate (bbl/day)                                                     | 8,000           |  |  |  |  |  |
| Years of Injection <ul> <li>Pre-injection</li> <li>Post-injection</li> </ul> | 20<br>1<br>100  |  |  |  |  |  |
| Reservoir Depth (ft)                                                         | 4,700           |  |  |  |  |  |
| Reservoir Pressure (Psi)                                                     | 2,255 and 1,500 |  |  |  |  |  |
| Reservoir Temperature (F)                                                    | 165             |  |  |  |  |  |
| Wellhead Temperature (F)                                                     | 60              |  |  |  |  |  |



#### **Results of Predictive Injection Simulation**

|     | Scenario | Injection fluid<br>salinity (ppm) | Reservoir fluid<br>salinity (ppm) | Molality<br>(mole/kg ) | CO <sub>2</sub> Dissolved, % | CO <sub>2</sub> Gas Phase, %   |
|-----|----------|-----------------------------------|-----------------------------------|------------------------|------------------------------|--------------------------------|
|     | 1        | 100,000                           | 10,000                            | 0.2                    | 99.99%                       | 0.01%                          |
|     | 2        | 200,000                           | 10,000                            | 0.2                    | 99.99%                       | 0.01%                          |
|     | 3        | 300,000                           | 10,000                            | 0.2                    | 99.97%                       | 0.02%                          |
|     | 4        | 400,000                           | 10,000                            | 0.2                    | 99.94%                       | 0.04%                          |
|     | 5        | 100,000                           | 20,000                            | 0.4                    | 99.99%                       | 0.01%                          |
|     | 6        | 200,000                           | 20,000                            | 0.4                    | 99.98%                       | 0.02%                          |
|     | 7        | 300,000                           | 20,000                            | 0.4                    | 93.06%                       | 6.93%                          |
|     | 8        | 400,000                           | 20,000                            | 0.4                    | 63.92%                       | 36.07%                         |
|     | 9        | 100,000                           | 30,000                            | 0.6                    | 99.99%                       | 0.01%                          |
|     | 10       | 200,000                           | 30,000                            | 0.6                    | 92.19%                       | 7.80%                          |
|     | 11       | 300,000                           | 30,000                            | 0.6                    | 65.35%                       | 34.64%                         |
|     | 12       | 400,000                           | 30,000                            | 0.6                    | 53.19%                       | 46.79%                         |
| EER |          |                                   |                                   |                        |                              | Critical Challenges. Practical |

#### **Results:** Dissolved CO<sub>2</sub> Profile



- Increases in salinity and molality may have higher impact on the dissolved CO<sub>2</sub>.
- An increased water salinity may decrease the solubility of CO<sub>2</sub>

EERC NORTH DAKOTA

#### **Bottom-hole Pressure Profile**



• Bottom-hole pressure increases as the injection salinity and molality rise



### **Molality Distribution Within The Reservoir Scenario 3**

Dissolved CO<sub>2</sub> moves downward



## Additional Scenarios: Bottom-hole Pressure = 2,255 psi and 1,500 psi



 The relationship between pressure and the solubility of CO<sub>2</sub> in brine is complex and depends on a variety of factors. However, 0.2 molality may represent the best balance of volume of CO<sub>2</sub> injected and volume of CO<sub>2</sub> remaining in solution

EERC UND NORTH DAKOTA

#### **Bottom-hole Pressure Profile**



Well Bottom-hole Pressure - CW\_Injector





- $\succ$  Recommended CO<sub>2</sub> molality for all scenarios: 0.2 mol/kg.
- > This concentration can increase if the injection fluid salinity is lower.
  - Salinity < 200,000 ppm, CO<sub>2</sub> molality = 0.4 mol/kg.
  - Salinity <100,000 ppm,  $CO_2$  molality = 0.6 mol/kg.
- This dissolution molality range will ensure no free-phase CO<sub>2</sub> in the carbonated brine.



# Wellbore Corrosion Model

# Wellbore materials and corrosion issue in class II well: NGL wells

- Corrosion
- **Tubular materials and long string** made of Carbon steel L80 (API 5CT). Internally coated.
  - API 5CT L80 casing and tubing include grades L80-1, L80 9Cr (Cr 8%-10%), L80 13Cr (Cr 12%-14%)
  - Uncoated carbon steel L80-1 is susceptible to  $CO_2$  corrosion
  - Corrosion resistant alloy (CRA) casing L80 9Cr (Cr 8%-10%) & L80 13Cr (Cr 12%-14%) are susceptible to localized corrosion due to metallurgical structure, chloride concentration, temperature, pH, Presence of other species such as scaling ions, organic acids, and CO<sub>2</sub> and H<sub>2</sub>S gases.





API 5CT L80 13Cr Casing



# **Carbonated Brine Chemistry**

NATIONAL ENERGY TECHNOLOGY LABORATORY

Produced water data (Excel) input to OLI.

- USGS produced water (15000 dataset)-North Dakota-McKenzie County-Bakken formation
- Remove data with above +-5% charge imbalance. Use averaged data.
  - Chemical Composition of produced water- No added CO<sub>2</sub>, Steam amount = 1L. Temperature 25° C, 1 atm

| Total Dissolve | c Total Diss | Total | mg/L                                                         |           |
|----------------|--------------|-------|--------------------------------------------------------------|-----------|
| TIC            | TIC          |       | mol C/L                                                      | Average   |
| Density        |              |       | g/mL                                                         | 1.17      |
| РН             | рН           |       |                                                              | 5.94      |
| K+1            | Potassium    | I     | mg/L of K+                                                   | 4483.17   |
| Na+1           | Sodium       |       | mg/L of Na+                                                  | 75341.45  |
| Ba+2           | Barium       |       | mg/L of Ba2+                                                 | 34.40     |
| Ca+2           | Calcium      |       | mg/L of Ca2+                                                 | 16674.76  |
| Fe+2           | Iron II      |       | mg/L of Fe2+ (If specified, else all Total assigned to Fe2+) | 124.71    |
| Mg+2           | Magnesiu     | m     | mg/L of Mg2+                                                 | 1091.15   |
| Cr+3           | Chromium     | ווו n | mg/L of Cr3+                                                 | 0.69      |
| Cl-1           | Chloride     |       | mg/L of CI-                                                  | 152006.21 |
| HCO3-1 as C    | Bicarbona    | te    | mmol/L of C                                                  | 32.78     |
| NO3-1          | Nitrate      |       | mg/L of NO3-                                                 | 151.96    |
| SO4-2          | Sulfate      |       | mg/L of SO42-                                                | 613.46    |

- Chemical Composition of produced water with 0.2 mole/kg (8800 mg/L)CO<sub>2</sub>. Steam amount = 1L. Temperature 25° C, 6.415 atm
- Chemical Composition of produced water with 0.6 mole/kg (26400 mg/L) CO<sub>2</sub>. Steam amount = 1L. Temperature 25° C, 20 atm



# **Scaling Tendency**

#### **Brine Analysis**

#### **Scaling Tendency Definition**

The Scaling Tendency (ST) is the ratio of the Ion Activity Product (IAP) to the solubility product constant  $(K_{sp})$ .

Scale Tendency =  $S_{mineral} \cong \frac{C}{C_0} = \frac{IAP}{K_{sp}}$ 

#### Where

U.S. DEPARTMENT OF

- C = measured concentration
- C<sub>0</sub> = concentration at equilibrium
- IAP = ion activity product
- K<sub>sp</sub> = Thermodynamic Solubility Product Constant

#### Thus,

- ST < 1 Indicates sub-saturation, and the solid is not expected to form
- ST = 1 Indicates saturation, and the solid is in equilibrium with water
- ST > 1 Indicates supersaturation, and solids will form



# **Scaling Tendency**



80

#### OLI simulation used to predict scaling tendency.

Brine solution is contact with Super 13Cr stainless steel





# Wellbore Corrosion Rate



#### OLI simulation to predict corrosion rates and calculate pH



#### Wellbore corrosion model summary:

- Acceptable corrosion rates for • carbonated brine injection (<0.02 mm/y)
- Scale minerals (which is not considered in the corrosion model) can further reduce corrosion rate.

# **Reactive Transport Model**



#### 2D Reactive Transport Model for Rock-Fluid Geochemical Interactions

- Reservoir: 300m x 300m x 100m
- Well location: x,y = 150m, 150m, well fluid discharge rate = 1280 m<sup>3</sup>/day (8000 bbl/day)
- Reservoir boundary is set to be open on both sides, without fluid velocity/discharge
- Longitudinal dispersivity = 100 cm, transverse dispersivity = 10 cm
- Diffusion coefficient = 1e-6 cm2/s
- Nodes number: 29 x 29





## **Rock-Fluid System**



| Formation | Concentration | Injection water | Concentration  |
|-----------|---------------|-----------------|----------------|
| Quartz    | 70.5 volume % | SiO2(aq)        |                |
| Muscovite | 2.7 volume %  | A +++           |                |
| Siderite  | 3.8 volume %  | Fe++            | 124.71 mg/L    |
| Mg++      | 57 mg/L       | Mg++            | 1091.15 mg/L   |
| рН        | 6.1           | рН              | 5.94           |
| Ca++      | 259 mg/L      | Ca++            | 16674.76 mg/L  |
| Na+       | 7114 mg/L     | Na+             | 75341.45 mg/L  |
| K+        | 408 mg/L      | K+              | 4483.17 mg/L   |
| CI-       | 10600 mg/L    | CI-             | 152006.21 mg/L |
| SO4       | 1000 mg/L     | SO4             | 613.46 mg/L    |
| HCO3-     | 1086 mg/L     | HCO3- as C      | 0.2 molal      |
| Ba++      |               | Ba++            | 34.40 mg/L     |
| NO3-      |               | NO3-            | 151.96 mg/L    |

Temperature =  $74 \circ C$ 



Chu, Min H. Study of the geothermal production potential in the Williston Basin, North Dakota. No. DOE/ID/12736-2. North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center, 1991.

# **Mineral kinetics**



| Primary | Minerals           | k (mol/cm2 s) | E (J/mol) | SA (cm2/g) | nucleus (cm2/cm3) | Reference                                     |
|---------|--------------------|---------------|-----------|------------|-------------------|-----------------------------------------------|
|         | Quartz             | 1.00E-16      | 87500     | 1000       |                   | Rimstidt and Barnes 1980                      |
| 1       | Muscovite          | 2.00E-16      | 64000     | 1000       |                   | Nagy 1995                                     |
| L       | Siderite           | 2.00E-11      | 55000     | 1000       |                   | set to dolomite                               |
|         | Barite             | 1.26E-12      | 30800     | 1000       | 1000              | Palandri and Kharaka 2004                     |
|         | Calcite            | 1.58E-10      | 63000     | 1000       | 1000              | Plummer et al. 1978                           |
|         | Dolomite           | 2.00E-11      | 55000     | 1000       | 1000              | Busenberg and Plummer, 1982                   |
|         | Witherite          | 4.47E-12      | 41900     | 1000       | 1000              | set to strontianite, Sonderegger et al., 1976 |
|         | Kaolinite          | 3.98E-16      | 64000     | 1000       | 1000              | Sverdrup, 1990                                |
|         | Dawsonite          | 1.00E-11      | 62800     | 1000       | 1000              | Palandri and Kharaka 2004                     |
|         | Magnesite          | 4.57E-14      | 23500     | 1000       | 1000              | Palandri and Kharaka 2005                     |
|         | Aragonite          | 1.58E-10      | 63000     | 1000       | 1000              | set to calcite                                |
|         | Huntite            | 2.00E-11      | 55000     | 1000       | 1000              | set to dolomite                               |
|         | Monohydrocalcite   | 1.58E-10      | 63000     | 1000       | 1000              | set to calcite                                |
|         | Maximum Microcline | 1.26E-15      | 58000     | 1000       | 1000              | set to K-feldspar                             |
|         | K-feldspar         | 1.26E-15      | 58000     | 1000       | 1000              | Helgeson et al., 1984                         |



























### Injection Period (year 0-20) Dissolved Carbon







### Injection Period (year 0-20) Dissolved Carbon









Calcite and aragonite CaCO<sub>3</sub>





Calcite and aragonite CaCO<sub>3</sub>







50 m



pH keeps decreasing



50 m



#### pH keeps decreasing





pH keeps decreasing





















#### Shut-in Period (Year 0-120, Injection Stops at Year 20) Dissolved Carbon







#### Shut-in Period (Year 0-120, Injection Stops at Year 20) Dissolved Carbon







#### Shut-in Period (Year 0-120, Injection Stops at Year 20) Dissolved Carbon







#### CO<sub>2</sub> Fate in Reservoir-20 Years of Injection and Longterm Storage



- Most rock-fluid interactions are limited in a certain region where the carbonated water is injected.
- pH decreased outside this region due to dissolved CO<sub>2</sub>(aq), which is the major phase of the sequestered carbonated water. Most CO<sub>2</sub>(aq) remained its phase during long-term storage.
- Mineral precipitation in reservoir is unlikely to block flow pathways for injection.
- Secondary precipitates mostly composed of carbonate minerals (Ca, Mg, Ba) and some barite.
- Limited stored CO<sub>2</sub> is sequestered as carbonate minerals. CO<sub>2</sub> long-term storage is still solubility sequestration.







- Carbonated brine storage is a low-risk geologic  $CO_2$  sequestration strategy.
  - The dissolved CO<sub>2</sub> concentration is affected by salinity, reservoir pressure and temperature. By selecting an appropriate CO<sub>2</sub> molality at the surface and subsurface, we can ensure minimal free-phase CO<sub>2</sub> in carbonated produced water for storage.
- Wellbore corrosion rate can be anticipate to be at an acceptable range to maintain operations for a carbonated brine injection.
  - Scale minerals can precipitate from carbonated produced water and further reduce corrosion rate. Adding CO<sub>2</sub> to produced water for injection is less likely to pose significant impacts on the existing wastewater disposal wells.
- CO<sub>2</sub> remained in liquid phase in long-term storage.
  - Small amount CO<sub>2</sub> converts to carbonate minerals in sandstone reservoir. CO<sub>2</sub> is safely stored via dissolution sequestration.



# **Next Steps: Pilot-Scale Implementation**



- Future research needs
  - Specific pilot site characterization and analysis?
  - Experimental test for wellbore corrosion?
- Technical challenges
  - Site selection and permits
  - Wellbore dissolution technology
  - Mixing scenarios
  - Injection operations

