

UNDUNIVERSITY OF NORTH DAKOTA

Resource Assessment of Industrial Wastes for CO₂ Mineralization

FECM 23 (08/29/2023) Award No: FE0032244 Project Period of Performance: 07/01/2023 - 07/31/2025 PI: Dr. Johannes van der Watt (University of North Dakota) Project Manager: Johnathan Moore

PROJECT PARTICIPANTS

University of North Dakota

- Energy and Minerals Innovation Center (EMIC)
- Dept. of Civil Engineering
- Dept. of Geography

• Dept. of Chemical Engineering

Envergex, LLC (Sub-awardee)

Industry Supporters – Residue Providers

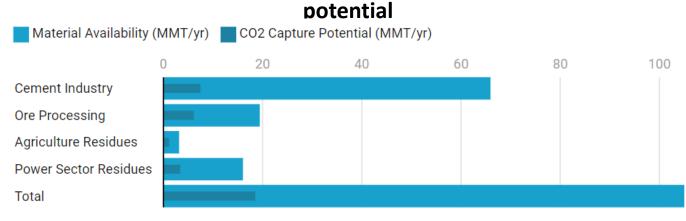
PROJECT SUMMARY

Opportunity: Industrial residues often underutilized – potential for use other than disposal

Goal: Use residues to capture CO_2 – beneficially alter composition for value-added secondary use

Solution approach:

- Identify industrial residues with carbonation potential
- Characterize chemical and physical properties
- Test CO₂ Mineralization
- Assess benefits of treatment
- Quantify environmental/economic performance


Waste reduction Reclaim Sustainable landfills Materials Environmental Industrial Residues benefits CO2 Mineralization (CO2M) Valuable byproducts **Economic** CO2 Industrial CO₂ Sources benefits sequestration Reduce CO footprin

BACKGROUND

Enabling CO₂ Mineralization using Industrial Residues

- CO₂ Mineralization Potential
 - No single resource available for DOE's 20 MMT CO₂ capture goal
 - Industrial residues = Potential reactive minerals
 - Can reduce residues & liabilities
 - Enhancing material value

Enhance commercial potential

U.S. industrial residue production and CO_2 mineralization

BACKGROUND

Heterogeneity Challenge

- Variability in properties, locations, & availability of residues
- Necessitates database & assessment tool/benchmark
- No two processes alike

Industry Needs

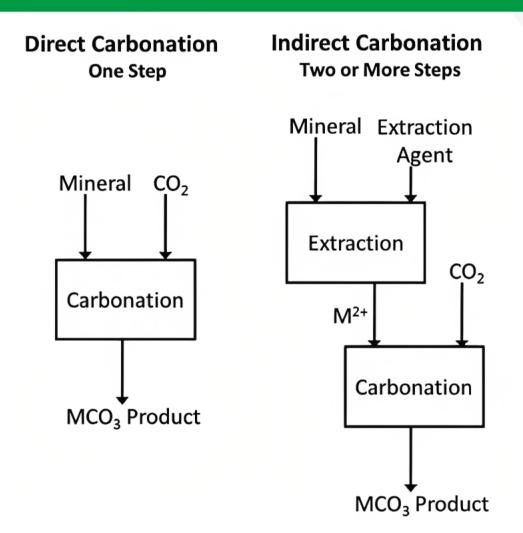
- Guidelines for CO₂ mineralization technologies
- R&D tools

PROJECT OBJECTIVES

Identify & quantify usable resources for CO₂ capture

Map resource locations

- Develop CO₂ Mineralization (CO2M) processes
- Tap into existing infrastructure (CO₂ resources)
- Beneficiate residues (identify users)
- Quantify process viability environmental & economic benefits/disadvantages



TECHNICAL APPROACH

CO₂ Mineralization (CO2M)

- E.g. Wollastonite reaction with CO₂:
- $CaSiO_3 + CO_2 = CaCO_3 + SiO_2$

- Carbonation advantage: Captured CO₂ does not require deep geologic disposal
- Nature's example: Weathering reactions
- But, kinetic & mass transfer limitations
- Processes impractical for ex-situ point-source capture
- Key approach: Proprietary enhancement orders of magnitude improvement

TECHNICAL APPROACH

• Reiterative approach Mineral CO₂ • Collect, **Residue procurement** Characterize **Residue Characterization** Carbonation • Test Compositional analysis • XRF Characterize • XRD ICP-MS Lab-scale testing MCO₃ Product Refine PSD Industrial residues **Direct mineralization testing** Select promising routes **Product Characterization** LCA and TEA for CO2 Compositional analysis Evaluate feasibility **Mineralization** XRF XRD **GIS Model** • ICP-MS PSD Processing schemes **Product testing** Cement replacement Process Flow Diagrams • ASTM testing standards Mineralization Assessment Tool **Mineralized Product Characterization and** 8 **Development Evaluation**

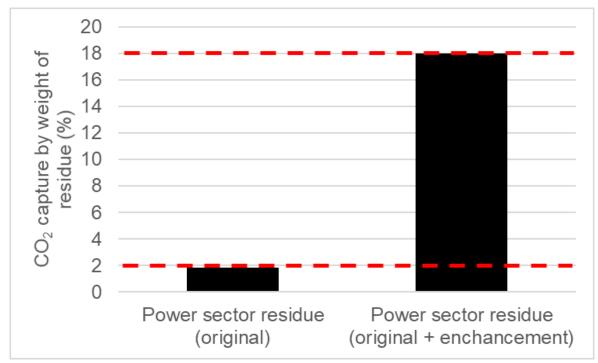
Task 1.0 - Project Management and Planning

- Project management plan (PMP)
- Community benefits plan (CBP)

Task 2.0 - Characterization of Industrial Residues

- Subtask 2.1 Residue Procurement
- Subtask 2.2 Residue Characterization
 - Compositional analysis: Ash, Moisture, LOI, and pH
 - Elemental analysis
 - Mineralogy
 - Particle Size Distribution
 - Grindability

Industrial residues



Task 3.0 - Ex-situ Direct Mineralization Testing

- Lab scale: Semi-batch testing
- CO₂ uptake
- Theoretical vs actual carbonation
- Parametric study

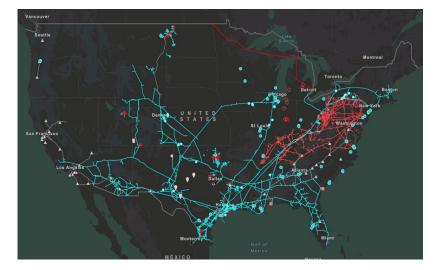
Mineralization example

- Example: Power sector residues
- Enhancement changes performance
- High carbonation potential

Power Sector Residue Mineralization

Task 4.0 - Mineralized Product Characterization and Evaluation

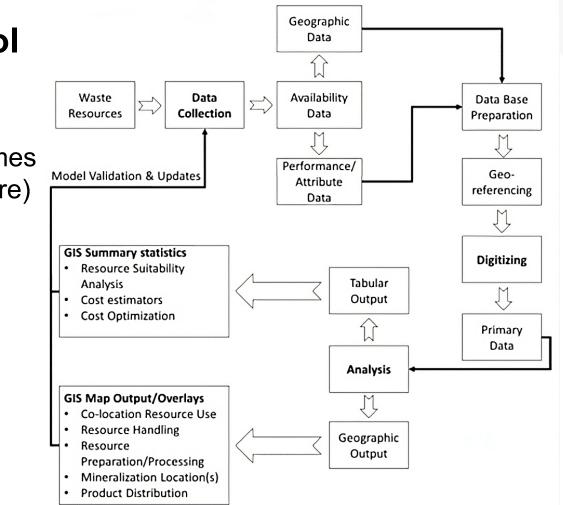
- Subtask 4.1 Product Characterization
 - Compositional analysis: Ash, Moisture, LOI & pH
 - Mineralogy & Microstructure
 - Leachability (landfilled material better/worse)
- Subtask 4.2 Product Performance Testing
 - E.g., ASTM C618 and ASTM C989 standard specification
 - Perform screening analyses
 - E.g., aggregate/cement replacement



Task 5.0 - Mineralization Assessment Tool Development

- Subtask 5.1 Lifecycle Assessment for CO₂
 Mineralization
 - LCA will follow ISO 14040-14044
 - SimaPro 9.1 software

- Subtask 5.2 Geographical Information System (GIS) Model
 - Model will be designed using GIS software package ArcGIS Pro



Task 5.0 - Mineralization Assessment Tool Development

 Subtask 5.3 – Develop Alternative-Processing Schemes –Develop processing schemes (modeling software)

13

- Subtask 5.4 Develop Process Flow Diagrams
 Coordinate with project supporters
- Subtask 5.5 Technical and Economic Analysis
 Class V Concept Screening (AACE Int.)

PROJECT SCHEDULE

- Milestones & deliverables for each task
- Project update reports through quarterlies and final project report

Task/Subtask/Milestone Description		23		20)24		20)25
		Q2	Q3	Q4	Q5	Q6	Q7	Q8
Fask 1 - Project Management & Planning								
Fask 2 - Characterization of Industrial Residues				-	-			-
Subtask 2.1 - Residue Procurement			-					
Subtask 2.2 - Residue Characterization								
Milestones/Deliverables			•					
Procure and prepare residues		\diamond						
Procure, prepare, characterize residue materials			\diamond					
Task 3 - Ex-situ Direct Mineralization Testing								
Milestones/Deliverables					-			
Evaluate performance of residues in lab scale system					\diamond			
Task 4 - Mineralized Product Characterization & Evaluation Subtask 4.1 - Reaction Product Characterization								
Subtask 4.2 - Product Performance Testing								
Milestones/Deliverables							-	
Description of residue and byproduct properties						\diamond		
Summary of product performance							\diamond	
Mineralization Results Report & Data							\diamond	
Task 5 - Mineralization Assessment Tool Development								
Subtask 5.1 - LCA for CO2 Mineralization								
Subtask 5.2 - GIS for CO2 Mineralization								
Subtask 5.3 - Develop Alternative-Processing Schemes								
Subtask 5.4 - Develop Process FlowDiagrams								
Subtask 5.5 - TEA								
Milestones/Deliverables								
Complete carbon lifecycle assessment							\diamond	
Developed GIS model								\diamond
Developed alternative-processing schemes, process flow diagrams and								
technical-economic analysis Resource assessment tool & user manual								

PROJECT MANAGEMENT PLAN & RISK MANAGEMENT PLAN

 Project Management Plan Overview Project scope, objectives, & timeline Organization 	U.S. Department of I	Dire Minerals Principal J Johannes v Research Assi	Daniel Laud ctor, Energy Innovation Notestigator an der Watt, stant Profess	& Center	North Dakota Industrial Commission – Lignite Research, Marketing and Development Program (NDIC-LRP)			
 Roles, responsibilities, & communication structure 	Envergex Sparking innovations Env		Program Resource Manager		urce			
 Scope, Schedule, Cost 								
 Scope definition, change control, detailed schedule, & budgeting 	Task 1 Project Management and Planning	Task 2 Characterization Proposed Industri			Task 4 Mineralized Product Characterization and		Task 5 Mineralization Assessment Tool	
 Quality and Communication 	and I mining	Residues	Tes	Testing		ation	Assessment Iooi	
Quality standards, assurance, & stakeholder communication	Van der Watt (Lead) Laudal (Support) Srinivasachar (Co-lead) 15	Van der Watt (Lea Srinivasachar (Co Graduate Student	-lead) Van der Watt (Co-lead)		Van der Watt (Lead) Srinivasachar (Co-lead) Graduate Students		Van der Watt (Lead) Klemetsrud (5.1 Co-lead) Vandeberg (5.2 Co-lead) Srinivasachar (5.3, 5.4 & 5.5 Co-lead) Graduate Students	

PROJECT MANAGEMENT PLAN & RISK MANAGEMENT PLAN

Risk Management Plan

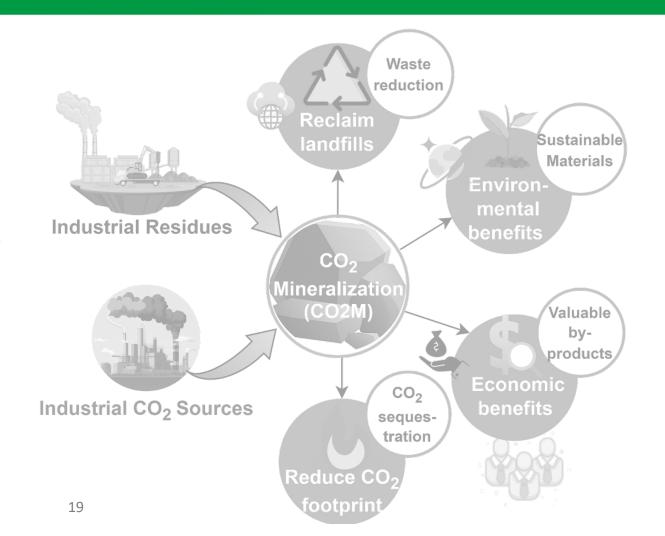
- Assessment and Prioritization
 - Evaluating risks likelihood & impact
- Mitigation and Contingency
 - Strategies to reduce risks, contingency plans
- Monitoring and Reporting
 - Ongoing risk tracking, communication, & reporting
- Documentation and Lessons Learned
 - Maintaining risk register, learning from outcomes

PROJECT BUDGET

- DOE & North Dakota Industrial Commission
 (NDIC) Project
- DOE Funding & NDIC Cost Share
- NDIC: "Assessment of Lignite-Based Industrial Residues for Value-Added Product Creation through CO₂ Mineralization"
- National- & State-wide focus

Project	DOE	NDIC			
Objective	Assess viability of using industrial wastes for CO ₂ mineralization	Assess viability of beneficiating lignite-based residues using mineralization			
Goal	Identify & quantify industrial residues applicable for CO ₂ capture	Identify & quantify as well as remove contaminants hindering residue use as construction replacement material			
Duration	24-months				
Budget	\$ 1,000,000	\$ 250,000 (cost-share)			

DOE ACKNOWLEDGEMENT & DISCLAIMER


This material is based upon work supported by the Department of Energy under Award Number FE0032244. This was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or presents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

- Thank you
- Questions?
- Contact details:

Dr. Johannes van der Watt Office: (701) 777-5177

Email: johannes.vanderwatt@und.edu

