Subsurface mafic and ultramafic rock mapping and analysis for carbon mineralization in the US (SubMAP-CO2)

DE-FE0032249

7/1/23 through 5/31/25

Govt. Share: \$989,655.00; Cost Share : \$280,488.00; Total : \$1,270,143.00

Estibalitz (Esti) Ukar The University of Texas at Austin

TEXAS Geosciences Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

The University of Texas at Austin Cockrell School of Engineering

Lamont-Doherty Earth Observatory Columbia University | Earth Institute

COLUMBIA UNIVERSITY

Key Participants

• The University of Texas at Austin

- Esti Ukar (PI)
- Shuvajit Bhattacharya (Co-PI) (Geophysics, Petrophysics)
- Nicolas Espinoza (Co-PI) (Geomechanics, Carbonation experiments)
- Lily Horne (3D model and database)
- Katie Smye (Database, Petrophysics)
- Andras Fall (Carbonation experiments)
- Ramon Gil-Ègui (Economics, source-to-sink assessment)
- Brent Elliott (Economic geology)
- Lorena Moscardelli* (Texas)
- Mert Ugurhan (GIS)
- Sue Hovorka* (CCÚS)
- Postdoctoral Fellow (3D model and experiments; currently conducting interviews)

Lamont-Doherty Earth Observatory/Columbia University

- Peter Kelemen* (Carbon mineralization, sampling)
- Jakob Tielke (Carbon mineralization experiments)
- Christine McCarthy (Carbon mineralization experiments)

Knowledge gap: subsurface ultramafic rocks

Blondes, M.S., Merrill, M.D., Anderson, S.T., and DeVera, C.A., 2019, Carbon dioxide mineralization feasibility in the United States: U.S. Geological Survey Scientific Investigations Report 2018–5079, 29 p., https://doi.org/10.3133/ sir20185079

Knowledge gap: subsurface ultramafics

Map Includes peridotite, dunite, picrite and their altered form, serpentinite

Aplin (1951)

Project Objective

- Characterize and document:
 - Location
 - Volumetric extent
 - Mineralogy (including critical minerals, asbestiforms)
 - Petrophysical characteristics (grain size, grain density, porosity, permeability)
 - Carbonation potential

... of mafic and ultramafic rocks in the subsurface of the USA where large amounts of CO_2 can be stored via *in-situ* carbon mineralization

Goals

- Subsurface 3D mapping of mafic/ultramafic bodies
- Rock characterization and analysis
- Carbonation reaction rates and carbonation capacity
- Identification of subsurface CO₂ storage opportunities in the US

Deliverables

- Subsurface 3D map and core database (Y1Q4)
- Metadata of subsurface mafic and ultramafic rocks linked to the 3D subsurface model (Y2Q3)
- Source-to-sink assessment and ranking of sites across the USA where large amounts of CO₂ can be permanently stored (Y2Q4)

Benefits

Support large-scale CO₂ storage via mineralization leading to widespread deployment

- Identification of mineralization-based storage opportunities across the U.S. for long-term, safe, economical, and scalable storage
- Assessment of the quantity, quality, availability, accessibility, volume, and CO₂ storage potential and costs associated with different sites
- Quantitative assessment of the distribution and quantity of CO₂-reactive minerals
- Measurement of relevant reaction kinetics and reaction rates at field conditions
- Assessment of likely mineralization processes and selection of locations for future, detailed site evaluations

- Task 1: Project Management and Planning
 - 1.1 Project Management Plan
 - 1.2 Diversity, Equity, and Inclusion Plan
- Task 2: Subsurface 3D mapping of mafic and ultramafic bodies
 - 2.1 Literature/database review and curation
 - 2.2 Gravity and magnetic anomaly survey analysis
 - 2.3 Non-public data sources
 - 2.4 Basement well penetration –petrophysical and core data compilation
 - 2.5 Data synthesis and subsurface map and 3D map/model construction
- Task 3: Subsurface rock characterization
 - 3.1 Core sampling and description
 - 3.2 Field sampling and description
 - 3.3 Petrologic characterization and petrophysical measurements
 - 3.4 Integrated petrophysical analysis
- Task 4: Kinetics and carbonation reaction rate experiments
 - 4.1 Autoclave experiments
 - 4.2 Flow-through experiments
 - 4.3 Pressure vessel and synthetic CO₂-rich fluid inclusions
- Task 5: CO₂ source-to-sink site assessment
 - 5.1 Sites of highest potential as CO₂ sinks
 - 5.2 Community impact and land use
- Task 6: Public database population and web portal construction

		Year 1				Year 2				
Task name	Assigned Resources	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	
Task 1.0 -Project Management and Planning	Ukar, Bhattacharya, Espinoza									
M1: Project Kickoff Meeting	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc	\star								
Subtask 1.1 Management	Ukar, Battacharya, Espinoza					I				
Subtask 1.2Meetings	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc									
Subtask 1.3Reporting	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc									
Task 2.0 -Subsurface 3D mapping of mafic and ultramafic bodies	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc									
Subtask 2.1Literature and database review and curation	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc									
Subtask 2.2Gravity and magnetic anomaly survey analysis	Horne, Bhattacharya, Smye, postdoc									
Subtask 2.3Non-public data sources	Ukar, Horne, Smye, Elliott, Fall, Bhattacharya, Postdoc									
Subtask 2.4Petrophysical log and core data compilation	Smye, Bhattacharya									
Subtask 2.5 -Data synthesis and subsurface map and 3D model construction	Horne, Bhattacharya, Smye, postdoc									
M2: Summarize subsurface map and core database construction					\star					
Decision point #1: Do we have enough data and samples to proceed?					\star					
Task 3.0 - Subsurface rock characterization	Ukar, Fall, Elliott, Smye, Bhattacharya, postdoc									
Subtask 3.1Core sampling and description	Ukar, Fall, Elliott, postdoc									
Subtask 3.2 Field sampling and description	Ukar, Elliott, Kelemen, Tielke, postdoc									
M3: Summarize core and field sample dataset						\star				
Subtask 3.3 Rock petrologic characterization and analytical measurements	Ukar, Fall, Elliott, Espinoza, postdoc									
Subtask 3.4Integrated petrophysical analysis	Bhattachrya, Smye					I				
M4: Summarize subsurface rock characterization dataset								\star		

		Year 1							
Task name	Assigned Resources	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
Task 4.0Kinetics and carbonation reaction experiments	Espinoza, Fall, Kelemen, Tielke, McCarthy, postdoc								
Subtask 4.1Autoclave experiments	Espinoza, postdoc								
Subtask 4.2Flow-through experiments	Espinoza, Kelemen, Tielke, McCarthy, postdoc								
M5: Assess success and scalability of autoclave and flow-through experiments								\star	
Subtask 4.3 Pressure vessel and synthetic CO2-rich fluid inclusions experiments	Fall								
M6: Assess success and scalability of pressure vessel experiments								\star	
M7: Identify challenges that can affect upscaling								\star	
Decision point #2: Can experimental results be used for a realistic CO2 source-to-sink assessment								*	
Task 5.0CO2 source-to-sink site assessment	Ramon Gil-Egui, Horne, Smye, Elliott, Battacharya, Ukar, Postdoc								
Subtask 5.1Sites with highest potential as CO2 sinks	Ramon Gil-Egui, Horne, Smye, Elliott, Battacharya, Ukar, Postdoc								
Subtask 5.2Community impact and land use	Ramon Gil-Egui								
M8: Deliver final assessment of potential CO2 sink sites and reccomendations for further site-specific assessment									\star
Task 6.0Public database population and web portal construction	GIS and web design specialist								
M9: Launch publicaly accessivle web portal									\star
M10: Final meeting and report									\star

Task	Milestone Title and Description	Planned completion date	Verification Method
1	M1: Project Kickoff Meeting	Y1 Q1	Meeting attendance; Presentation
-			file
2	M2: Summarize subsurface map and core database construction	Y1 Q4	Submit written report to DOE
			summarizing subsurface map and
			core database
2	Decision point #1: Do we have enough data and samples to proceed?	Y1 Q4	
3	M3: Summarize core and field sample dataset	Y1 Q4	Submit written report to DOE
			summarizing subsurface sample
			dataset
3	M4: Summarize subsurface rock characterization dataset	Y2 Q3	Submit written report to DOE
			summarizing subsurface rock
			characterization dataset
4	M5: Assess success and scalability of autoclave and flow-through experiments	Y2 Q3	Submit written report to DOE
			assessing the success and scalability
			of autoclave and flow-through
			experiments
	M6: Assess success and scalability of pressure vessel experiments	Y2 Q3	Submit written report to DOE
4			assessing the success and scalability
			of pressure vessel experiments
	M7: Identify shallonges that can affect unscaling	V2 02	Quick look report identifiying
4	Wir, identify chanenges that can affect upscaling	12 Q3	challenges for upscaling
4	Decision point #2: Can experimental results be used for a realistic CO2 source-to-sink	Y2 03	
	assessment	12 00	
5	M8: Deliver final assessment of potential CO2 sink sites and reccomendations for further assessment	Y2 Q4	Submit written report to DOE
			assessing potential CO2 sinks; submit
			recommentdation of sites for further
			assessment
6	M0: Launch publicly accessible web portal	V2 04	Inauguration of fully operative,
	wis. Lauticit publicity accessible web portai	12 Q4	interactive web portal
All	M10: Final months and report	V2 04	Submit to DOE letter report of final
	wito: Final meeting and report	12 Q4	meeting of team members

Task 1: Project Management and Planning

- Management
 - PI/Co-PI, Senior advisors
 - Esti Ukar (PI)
 - Shuvajit Bhattacharya: Geophysics/petrophysics
 - Nicolas Espinoza: Carbonation experiments
 - Peter Kelemen: Columbia (sampling, characterization, experiments)
 - Advisors: Peter Kelemen, Sue Hovorka, Lorena Moscardelli
- Meetings
 - Monthly
 - Weekly/daily as needed depending on task
- Reporting
- DEI: Diverse group

Task 2: Subsurface mapping

• 2.1 Database/literature review

- 4 Regional subdivisions
- State Geological Surveys
- Started from the southern states

• 2.2 Gravity and magnetic surveys (public data sources)

• 2.2 Gravity and magnetic surveys (public data sources)

Magnetic anomaly map of USA (Sims et al. 2008, USGS)

Airborne Geophysical Survey Inventory (USGS)

• 2.3 Non-public data sources

Texas

Coal Creek serpentinite (serpentinized harzburgite)(Mosher et al., 2008)

50

100 Kilometers

Pecos Mafic Intrusive Complex (Barnes et al., 1999) Location of Nellie # 1 Well 2.3 Non-public data sources
Texas

Trans-Pecos Magmatic Province, Cenozoic igneous rocks. Piccione et al. (2019)

Trans-Pecos aeromagnetic/aeroradiometric survey (USGS). Bultmann (2021)

USGS Aeromagnetic Survey Map, Cornudas Block

Concealed intrusions with magnetic properties

- 2.3 Non-public data sources
 - Texas

Our Company ~ Services ~

SERPENTINE PLUG PLAY, (TX) [A1043]

🖋 By administrator 📋 May 21, 2014 🛛 🝃 Aeromagnetic Surveys 🚿 Aeromagnetic, Serpentine Plug Play, Texas

Mileage:

EDCON-PRJ

North block: (not available) Central block: 3,514 line miles South block: 2,340 line miles

Serpentine Plug Play, (TX)

200+ Late Cretaceous volcanic bodies documented in central and south TX

Rio Grande Embayment, (TX)

- 2.4 Well penetrations
 - Petrophysical logs
 - Cores
- Summary of location and metadata of wells that have penetrated mafic/ultramafic basement throughout the US
- ArcGIS map

2.5 Subsurface 3D model and volume calculation

 Inversion of residual total field (RTF) magnetic data using a Magnetic Vector Inversion (MVI) code (SimPEG Python open-source package; Cockett et al., 2015).

Mitchinson et al. (2020)

Task 3: Rock sampling and characterization

- 3.1. Subsurface samples. Challenge: difficult to obtain
 - State Geological Survey contacts to provide thin sections, chips, and (hopefully) core
 - Mining companies:
 - Minnesota: Tamarack Mine (Talon Metals/Rio Tinto)
 - Stillwater (Montana)
 - Collaborations/sharing with other DOE-funded groups
- 3.2 Field sampling
- 3.3 Rock characterization
- 3.4 Integrated petrophysics

• 2.3 Field sampling

Task 4: Carbon mineralization experiments

- 4.1. Autoclaves
- 4.2. Flow-through experiments
- 4.3. Pressure vessels and synthetic fluid inclusions
- Array of UT Austin and Lamont labs

Triaxial deformation apparatus (Lamont; McCarthy, Tielke lab)

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

- Simulate P, T conditions at depth
- Measure sample's response to CO₂

Pore Pressure Fluid Mixing Vessel

• Autoclave and flow-through experiments (UT Austin, Espinoza lab)

- Simulate P, T conditions at depth
- Measure sample's response to CO₂ injection
- Autoclave, flow-through

- Reaction Screening Experiment Platform (RSEP)
 - Quick screening, Batch Reactions

- 92 reaction vials
- 10 ml rubber-septum vials at <100°C and atmospheric pressures
- Automated gas headspace sampling for concentration and stable isotope compositions
- Rapid testing of multiple batches of experiments
- Use to define reaction conditions for the more elaborate, expensive, and timeconsuming experiments

- Hydrothermal vessels and fluid inclusions as micro-reactors (Fall lab)
 - Olivine/pyroxene + H₂O-CO₂(±NaCl-MgCl₂)

 $Mg_2SiO_4(OI) + 2CO_2 \leftrightarrow 2MgCO_3 (Mag) + SiO_2(Qtz)$

- Reactions monitored by optical microscopy, SEM, Raman
- \succ Reaction rates at 50°C to 200°C → hours to weeks

Task 5: Source-to-sink assessment

Updated 3D model of subsurface rock volumes
 Carbonation potential based on mineralogy etc.

2) Nearby CO₂ (~100miles) sources
- EPA's Flight GHG tool

Rank potential sites for in-situ carbon mineralization

3) CO₂ transport (pipeline) network - Princeton Study Proposed Trunk CO₂ Pipeline

Network (Larson et al., Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Final report, Princeton University, Princeton, NJ, 29 October 2021)

2023 annual technical report meeting, Pittsburgh PA 2023

Department of Defense

Fish and Wildlife Service Forest Service National Park Service

Task 6: Public data sharing

- Results from tasks 2-5 will be integrated into public databases:
 - DOE NETL Energy Data Exchange (EDX)
 - USGS Minerals Database (USMIN)
 - Geological Survey's Earth Mapping Resources Initiative (Earth MRI) by site- sitespecific characterization of resources.
 - Database systems managed by the State Geologic Surveys
- Construct a web portal for easy access to the data generated in this study

Next steps

- Task 1: Project Management
 - Finalize hiring postdoctoral fellow
- Task 2: Subsurface 3D mapping of mafic and ultramafic bodies
 - Continue literature/database review and curation
 - Seek petrophysical data and well locations from State Geologic Surveys/companies
 - Seek subsurface core samples from State Geologic Surveys/companies/DOE-funded groups
 - Seek non-public geophysical data
 - With postdoctoral fellow in place (expected September-October 2023) begin volumetric calculations and subsurface 3D model construction
- Task 3: Subsurface rock characterization
 - Begin field sample characterization and petrophysical measurements
 - Begin available subsurface thin section characterization
 - Begin petrophysical analysis
- Task 4: Kinetics and carbonation reaction rate experiments
 - Continue single-mineral experiments
 - Forsterite/fayalite
 - Pyroxene
 - Serpentine
 - Begin testing full rock, field samples

Summary of lessons to date

Early stages of study

- Subsurface well/core data more disseminated and more poorly characterized than expected
 - Lithologic description of wells/core not always available
- Core samples scarce and difficult to get
- Cross-project sample sharing
- Field samples for experiments/testing
- Recent algorithms and open-source code allow for rock volumetric calculations
- RSEP useful for rapid batches, reaction kinetics
- Autoclave/flow-through to test full rock and reaction-driven cracking
- Simultaneous progress on other DOE-sponsored projects (e.g. socieconomic/environmental risks) will allow for a better source-to-sink assessment