

Distributed Mafic Rock Resources for CO₂ Mineralization in Arizona

Lisa A. Thompson (PI; AZGS), Jennifer L. Wade (Co-PI; NAU), Klaus S. Lackner (Co-PI; ASU) Brian Gootee (Co-PI; AZGS)

OGICAL SURVEY

NAU Ex-situ CO₂ reactivity testing of cinder at high temperatures and pressures

The Mafic Rock Resource Inventory (MMRI)

Direct Air Capture to Mineralization (DACM) systems model

Mafic volcanism in Arizona

Geologically young mafic volcanic fields have many eruptive centers (cones) and lava flows

This Study's Focus: Cinder

Cinder cones occupy <1 km³

Cinder (scoria) is naturally fragmented, vesicular, and glassy

Preliminary studies: Ex-situ Cinder CO₂ Reactivity

Testing the efficacy of reacting CO₂ with cinder at **ambient temperatures/ pressures**

- 1. Mill then sieve to <63 micron powder
- 2. React in a buffered aqueous solution of 0.64 M NaHCO $_3$ supersaturated with CO $_2$ from a soda stream
- 3. Low intensity reactions over severl weeks

Preliminary studies: High Mg & Fe samples

Ideal is >10 wt% MgO

Powder XRF shows variable MgO, FeO, and CaO composition in unreacted samples

Merriam Crater cinder samples

Preliminary studies: Reacted samples & produced carbonate

Test how much carbonate was produced through thermalgravimetric analysis (TGA)

TGA shows $FeCO_3$ (siderite) and $MgCO_3$ (dolomite) produced during mineralization

Ambient T/P

Reacted sample

Theoretical Capture Capacity

Theoretically, a 0.5 km³ cinder cone with a bulk rock density of 2.8 g/cm³ and an MgO average of 10 wt% would trap 11 wt% of CO₂ as MgCO₃. This is equivalent to **30 million metric** tons of CO₂ per cone if only 20% of the Mg is reacted. (Fe trapped in carbonate is not accounted for in this theoretical calculation)

This study: Ex-situ mineralization at high T&P

Benchmarked Direct Aqueous Mineralization [1]

- pH = 6.5 (NaHCO3 buffer)
- PCO2 = 140 bar
- T = 185 degrees Celsius
- Time ≤ 24 hours
- Mineral size = 34-100 microns
- Solid Loading: 15 wt%
- San Carlos olivine as benchmark

Objective: Maximize Reaction Extent, Accelerate Kinetics, Minimize energy intensity with parameters:

- Water Load
- Water salinity
- PCO₂ and T
- Particle Size

Preliminary: Ambient temperature and pressure

[1] Environ. Sci. Technol. 2007, 41, 7, 2587–2593

Mafic Rock Resource Inventory

Published data	 geochemistry mapping
New 1:24K geologic mapping	Cinder cone faciesFill in data gaps
Cinder sampling/ handheld XRF	 Grain size/crystallinity variations
Whole rock geochemistry	Statewide sample database
Thin section analysis	 Pre-reaction mineral ID and abundance
Porosity/permeability	 Pre- and post reaction physical properties
TGA/XRF/XRD/SEM	 Post-reaction mineral ID
Reaction kinetics	Parameters and reaction extentKinetics
Land use/ water chemistry	Economize ex-situ reactionsSystems model development

Magmatic Mapping:

Cones and flows related to one another by chemistry & ranked by olivine content

Whole rock geochemistry

Bulk rock major element analysis

MgO >10% wt% will guide sampling strategy

Land ownership

Land ownership intersected with high priority targets to inform an economic model

Water quality

Wells with total dissolved solids (TDS) data appended for systems model

Entire database will be publicly available and accessible via a userfriendly web map

Geronimo-San

Bernadino

Copyright: © 2013 National Geographic Society, i-cubed

Volcanic Field

Mafic Rock Resource Inventory

Published data	geochemistrymapping
New 1:24K geologic mapping	Cinder cone faciesFill in data gaps
Cinder sampling/ handheld XRF	Grain size/crystallinity variations
Whole rock geochemistry	 Statewide sample database
Thin section analysis	 Pre-reaction mineral ID and abundance
Porosity/permeability	 Pre- and post reaction physical properties
XRF/XRD/SEM	Post-reaction mineral ID
Reaction kinetics	Parameters and reaction extentKinetics
Land use/ water chemistry	Economize ex-situ reactionsSystems model development

Cinder mine at Sheep Hill, Flagstaff, AZ San Francisco Volcanic Field

Many cones are already mined

Cinder is mined throughout the state for landscaping and road surfacing material

Direct Air Capture to Mineralization Systems Model

Renewable Energy

CO₂ delivered in bicarbonate brine using saline groundwater

Provide a quantifiable model that describes generic implementation

What amount of capital, equipment, energy, water, and disposal are required? What are the environmental impacts? Environmental Justice considerations? What uses are there for the reacted material?

Summary

- Low intensity CO₂ reactions with cinder produce iron carbonate and dolomite; represents 20% of the theoretical CO₂ capture capacity of sample (prelim to Task 3).
- Equipment for high intensity reactions is being procured (Task 1)
- MMRI is being developed in ArcGIS synthesizing published data (Tasks 2 and 4)
- DACM will leverage data from MMRI and reaction experiments

Photomicrograph of olivine crystals (bright colors) in picritic basalt

Next steps: Geologic mapping, sampling, and reacting!

lathompson@arizona.edu

Arizona Geological Survey at the University of Arizona

blog.azgs.arizona.edu

Acknowledgements: Program Manager Ashley Urosek; Randi Bellasai (Associate Director and Business Manager at AZGS); Tawnya Wilson (Research Scientist at AZGS); Justin Flory (ASU)

