

Core Carbon Storage and Monitoring Research (CCSMR): Task 5 – Ambient Seismic Noise Reservoir Imaging for Monitoring

FWP-ESD14095

Nori Nakata

Sin-Mei Wu, David Alumbaugh, Julia Correa, Stas Glubokovskikh

Lawrence Berkeley National Laboratory

Task overview

<u>Task objectives</u>

- Develop and test ambient-noise imaging approaches for reservoir monitoring to detect CO₂ plume and leakage and characterize the reservoir.
- <u>Task Performance Dates</u>
 - October 1st, 2022 December 31st, 2023
- Funding
 - DOE: 146K (for Task 5)

Rapid Acquisition and Processing System (RAPS)

Seismic velocities are sensitive to CO₂ distribution.

P-wave velocity changes due to 10,500 tons of CO₂ injected at Nagaoka, Japan, estimated by cross-well active seismic surveys.

What is ambient noise?

Ambient-noise imaging

Ambient seismic wavefields are sensitive to subsurface structure and its time-lapse changes, but low-cost signals without using manmade sources.

30

6

Motivation

- Reservoir monitoring using single-well and cross-well ambient noise imaging approaches
- Integrate with other geophysical approaches such as active-source, microseismic and EM monitoring in RAPS.

Technical approach

- <u>Goal</u>
 - Develop and test ambient-noise imaging approaches for reservoir monitoring to detect CO₂ plume and leakage and characterize the reservoir.
- <u>Milestones</u>
 - FY23 Q1: Synthetic test for sensitivity analysis
 - FY23 Q2: Preparation of field data & preprocessing
 - FY23 Q3: Applying ambient-noise correlation with the field data.
 - FY23 Q4: Identification of extracted waves from ambient noise
 - FY24 Q1: Applying time-lapse analysis of cross-well tomograms and wavefields for reservoir monitoring

Field dataset

- Otway Test Site in Australia
 - Multiple fiber-instrumented
 wells
 - Continuous recording of acoustic motion (DAS)
 - One-day data is processed (baseline data).
 - Data recorded in CRC5, CRC6, CRC7 and surface.
 - 250GB/day.
 - 5-m receiver spacing
 - 10-m gauge length

Barraclough et al., 2022; Yurikov et al., 2022

DAS cable trajectory

X-Y view

0

Noise level reduction along the depth

CRC5 CRC7

Power spectra show depth dependencies and noisy band.

Single-borehole analysis

Monitoring along the borehole

Short-distance cross-borehole analysis

Body-wave propagation between wells

Long-distance cross-borehole analysis

CRC7-CRC5: Surface-wave dispersion analysis

1.53 km distance, search 0.1-4 km/s in FTAN

CRC7-CRC5: Repeatability of signals

Next steps

- Continue working on wave identification
- Velocity estimation with the extracted waves
- Improvement of signal-to-noise ratio with pre- and post-processing.

