[DE-FE0032259] Resource Assessment for Carbon Dioxide Storage via **Accelerated Carbonation Reaction with Recycled Concrete Aggregates (RCA)**

> **2023 FECM/NETL Carbon Management Research Project Review Meeting** Speaker: Seunghee Kim, Ph.D., P.E., University of Nebraska-Lincoln

August 29, 2023

IN OUR GRIT, OUR GLORY

Project Overview

Project Background

Technical Approach/ Project Scope

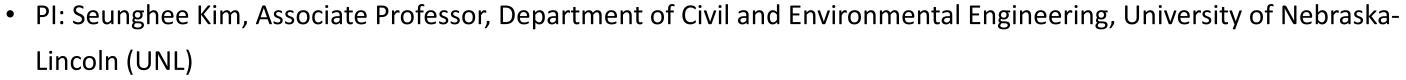
Current Status of Project and Accomplishments

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Table of Contents

Project Overview

Project Background


Technical Approach/ Project Scope

Current Status of Project and Accomplishments

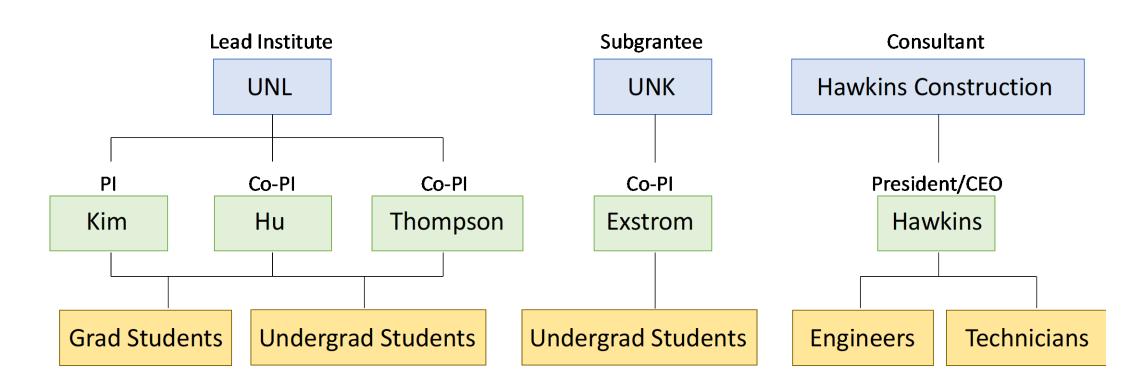

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Table of Contents

Key Project Participants

- Co-PI: Jiong Hu, Professor, Department of Civil and Environmental Engineering, UNL
- Co-PI: Eric Thompson, Professor, Economics; Director of the Bureau of Business Research, UNL
- Co-PI: Christopher Exstrom, Professor, Chemistry, University of Nebraska at Kearney (UNK)
- Consultant: Chris Hawkins, President/CEO of Hawkins Construction Company •

The organizational chart for project assignments

Project Objectives & Tasks

The Overall Objective

The overall objective is to identify the optimum processes to maximize CO_2 sequestration, enhance the efficiency of carbon mineralization, improve the technology readiness of carbon mineralization, and build and advance the required industrial waste resource base, in particular waste concrete base.

The Scope of Work

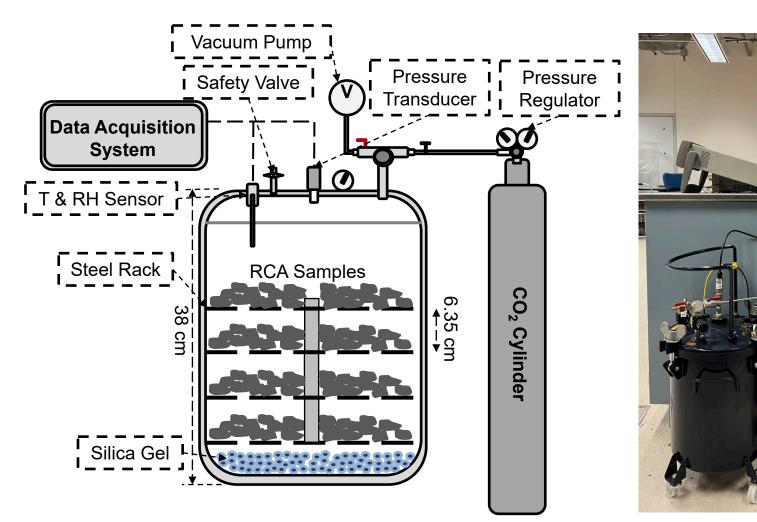
Task 1: Project management and planningTask 2: Field samplingTask 3: Laboratory analysis of carbonation reactionsTask 4: Resource assessment

Project Performance Dates

Project Performance Dates

July 1, 2023 – June 30, 2025.

Table. Milestones of the proposed project.					
Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification Method		
1/1.1	Updated project management plan	9/30/2023	Project management plan file		
1/1.1	Kickoff meeting	9/30/2023	Presentation file		
2/2.1- 2.2	 List of collected RCA samples and characterization results 	3/31/2024	Summary report		
3/3.1- 3.2	2. Small-scale carbonation reaction tests and the physical and mechanical test results	9/30/2024	Milestone report and presentation file		
3/3.3- 3.5	3. Large-scale carbonation reaction tests, the prediction of reaction rates and carbon uptake rates, and protocols for optimum CO ₂ storage in RCA	3/31/2025	Milestone report and evaluation of derived carbonation and CO ₂ uptake rates		
4/4.1- 4.3	 RCA resource base, CO₂ storage capacity, and cost and market analysis results 	6/30/2025	Final report and presentation file		

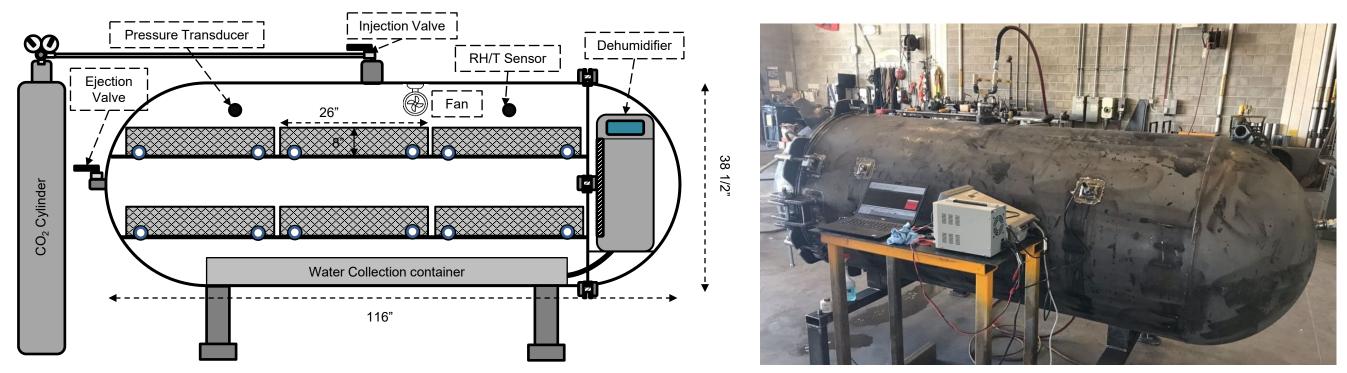

Table of Contents

Project Overview

Project Background

Technical Approach/ Project Scope **Current Status of Project and Accomplishments** Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Preliminary research between UNL and Hawkins Construction Company: Small-Scale Reaction Chamber



 $Ca(OH)_{2} + CO_{2} \rightarrow CaCO_{3} + H_{2}O$ C-S-H + CO₂ \rightarrow CaCO₃ + SiO₂ + nH₂O Carbonation variables: (1) Pressure, (2) Temperature, (3) Reaction time, (4) Relative humidity

Project History

Preliminary research between UNL and Hawkins Construction Company: Large-Scale Reaction Chamber

Carbonation variables:

(1) Pressure: 1 – 60 psi (7 – 414 kPa)

(2) Temperature: ambient temperature, cold temperature, and hot temperature

- (3) Reaction time: 1 24 hours
- (4) Relative humidity: 5 80%

Project History

- UNL Peter Kiewit Institute & Hawkins Construction Company in Omaha & City Campus
- **UNK** Bruner Hall of Science

Project Locations

Importance of Project towards advancing DOE Program Goals

Scientific and Technological Merit

- AOI-4 Carbon Storage Technology. Emphasis on classifying RCA with key indices, lab measurements of carbonation ulletreaction, CO₂ uptake rates at different scales, and mechanical & chemical characterization of carbonated RCA. The research will provide valuable results for RCA resource base and CO₂ storage potential.
- •
- Potential to achieve a minimum of 20 million tons of permanent CO_2 storage per year. •

Novelty of the Project

- In-house, fabricated, small- (30-Liter) and large-scale reaction chambers (one-ton capacity). •
- Specially designed physical, mechanical, and chemical test sets: deliver higher-value products for the construction ٠ industry and green market.
- Collaboration between academia and industry. ٠

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Table of Contents

Project Execution Plan

Task 1.0 Project Management and Planning

Subtask 1.1 – Project management plan Subtask 1.2 – Diversity, Equity, and Inclusion

Task 2.0 Field Sampling

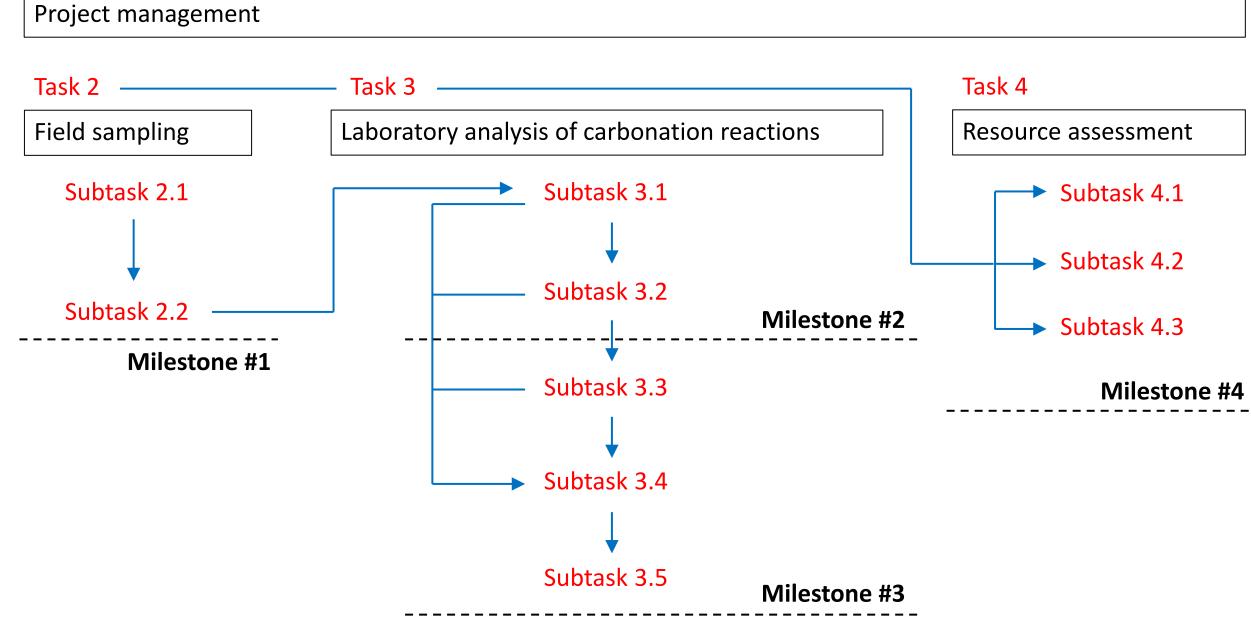
Task 4.0 Resource Assessment

Subtask 2.1 – Acquisition of RCA From different locations with temp-humidity Source code for concrete mixture Origin of infrastructure, size and gradation Subtask 2.2 – Characterization of RCA Physical/mechanical properties of RCA Residual mortar content (RMC) Chemical composition \rightarrow several groups of RCA

Task 3.0 Lab Analysis of the Carbonation Reactions

scale reaction chamber properties of CO₂-treated RCA scale reaction chamber

CO₂ sequestration of RCA


Subtask 4.2 – CO₂ storage potential

- Subtask 3.1 Measurement of reaction kinetics at small-
 - Different RCA groups, CO₂ pressure, temperature
- Subtask 3.2 Measurement of physical and mechanical

 - Physical/mechanical/chemical tests
- Subtask 3.3 Measurement of reaction kinetics at large-
- Subtask 3.4 Prediction of reaction rates and carbon
- uptake rates at anticipated field conditions
 - Solid-gas kinetic models, CO₂ mass consumption
- Subtask 3.5 Development of Protocols for Optimum
- Subtask 4.1 Resource assessment of RCA: expected resources of each RCA groups
- Subtask 4.3 Cost and market analysis: Industrial wastes and mineralization process

Project Schedule & Key Milestones

Task 1

Expected Outcomes and Impacts

Expected Outcomes and Impacts

- Improve the quality of the RCA resource base and carbon sequestration capacity via the carbonation of RCA in the • *ex-situ* mineralization setting.
- First set of quantitative test data on carbonation reaction rates and carbon uptake rates with different RCA groups. •
- Potential to disrupt the \$19 billion stone aggregate industry in an environmentally positive manner. ٠
- Reduced burden on the construction and demolition waste management. ullet
- Target cost: \$15-18 per ton for Carbonated RCA vs. \$22-28 per ton for natural limestone aggregates. ٠

Task/ Subtask	Decision Point Description	Date	Su
1	Decision regarding revision of Project Management Plan	9/30/2023	New Project Management Plar
2.1-2.2	Field sampling – acquisition and characterization of RCA	6/30/2024	Source materials are classified composition, and other relevant
3.1-3.3	Determination of carbonated RCA properties	3/31/2025	Improvements in the physical, characteristics of source mater demonstrated.
3.4-3.5	Derivation of carbonation reaction rate and CO ₂ uptake rate	3/31/2025	Carbonation reaction rates at a Potential carbon uptake rates a estimated.
4.1	Resource assessment of RCA	6/30/2025	The location, quantity, availabi each classified quality group ar
4.2	CO ₂ storage potential	6/30/2025	CO_2 storage potential (MtCO ₂ storage potential) resource groups is assessed.
4.3	Cost and market analysis	6/30/2025	The cost analysis of carbonation and market analysis are complete the second se

Project Success Criteria

Success Criteria

in submitted if necessary.

d with residual mortar content, chemical ant physical/ mechanical indices.

, mechanical, and environmental erials after the carbonation reaction are

anticipated in-situ conditions are derived. at the presumed mass-scale operation are

pility, and accessibility of RCA resources by are identified.

stored or sequestered) of identified RCA

on operation, as well as supply, demand, leted.

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

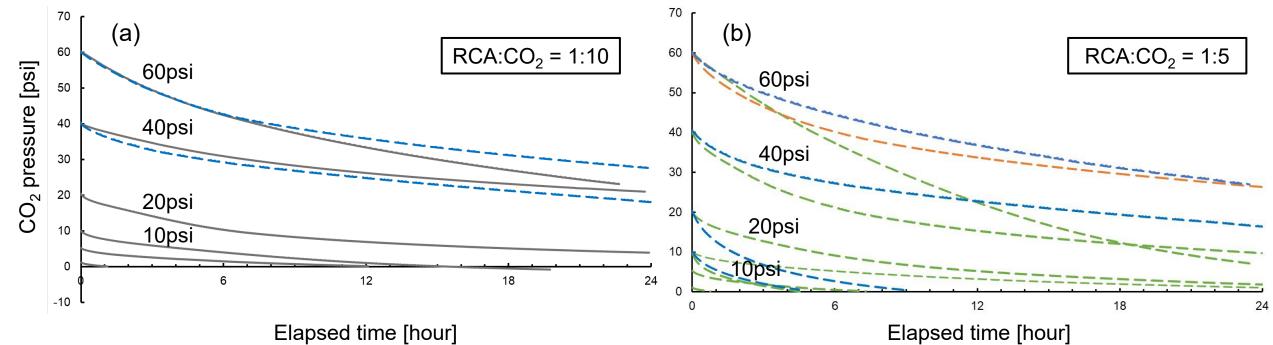
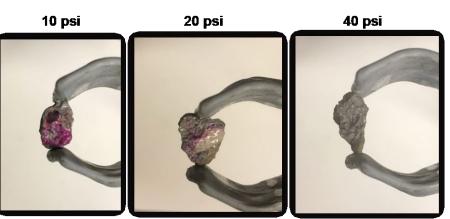
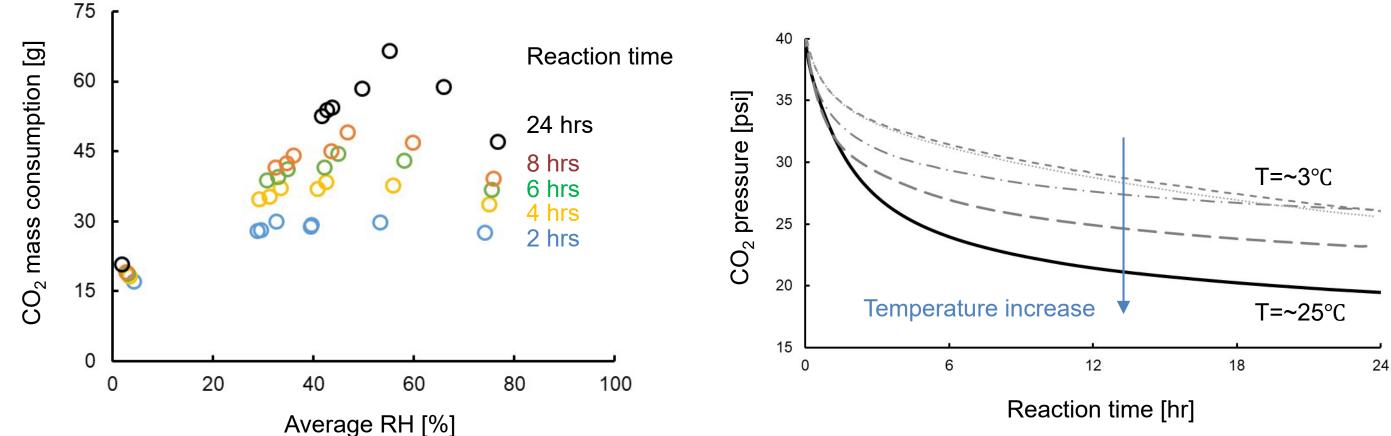

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Table of Contents

Summary of Significant Accomplishments/Key Findings (1)

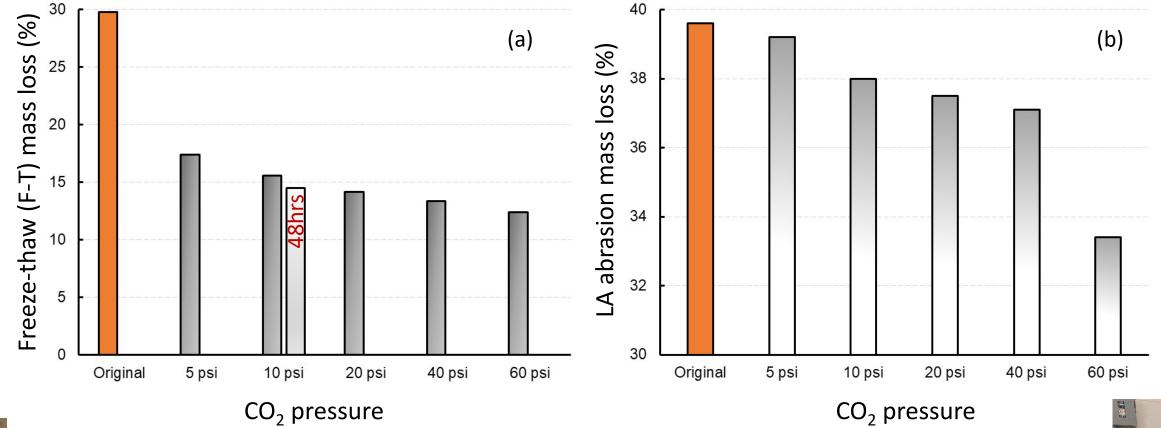

CO₂ Pressure and Reaction Time

1 psi 5 psi


Elapsed time [hour]

Summary of Significant Accomplishments/Key Findings (2)

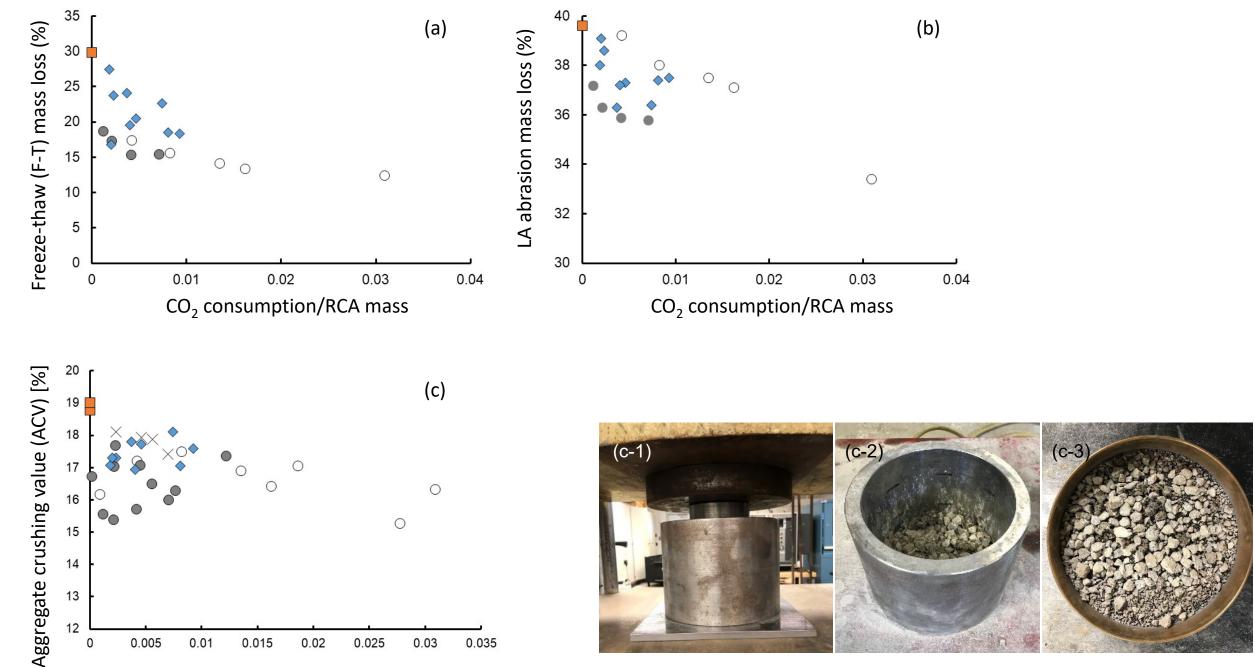
Relative Humidity (RH) and Temperature


Optimum CO₂ consumption, thus maximum CO₂ storage, can be achieved when the RH is maintained between 45%-55% during the carbonation reaction.

Temperature could play an important role in accelerating the carbonation reactions.

Summary of Significant Accomplishments/Key Findings (3)

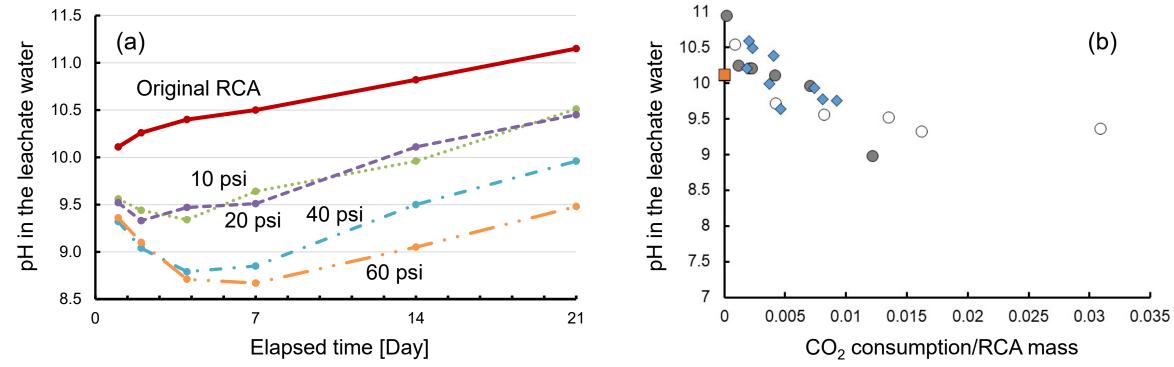
Mechanical Properties and Durability Improvement of Carbonated RCA



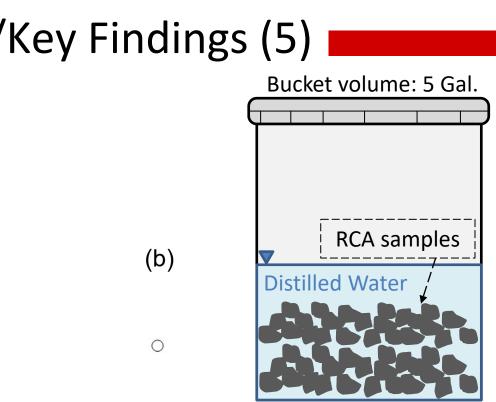
Preliminary results: The mass loss of RCA after (a) the F-T resistance and (b) LA abrasion tests for the different CO_2 pressures during the carbonation treatment.

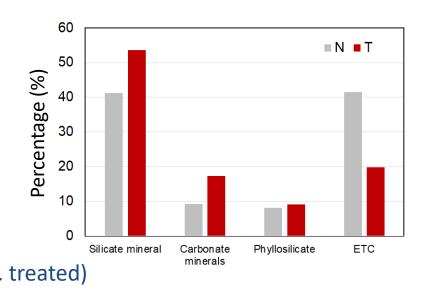
Summary of Significant Accomplishments/Key Findings (4)

Mechanical Properties and Durability Improvement of Carbonated RCA

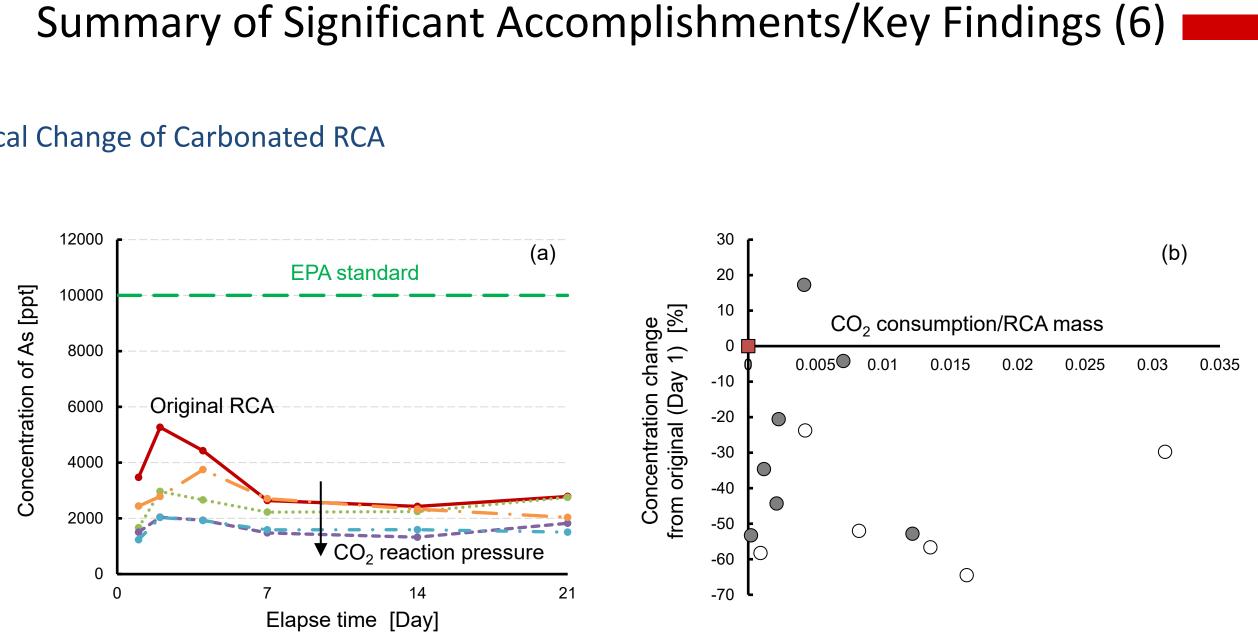


CO₂ consumption/RCA mass

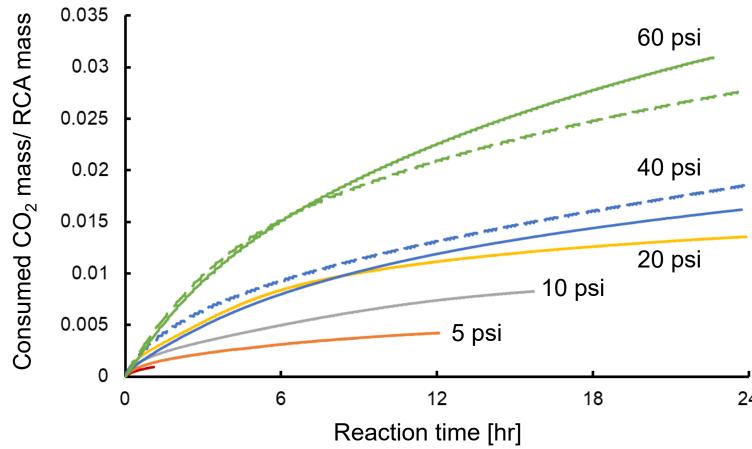



Summary of Significant Accomplishments/Key Findings (5)

Chemical Change of Carbonated RCA


Preliminary results: The batch leaching test: (a) pH in the leachate water with time elapses for different CO₂ reaction pressures and (b) pH in the leachate water after 24 hours of time elapse with respect to the CO₂ consumption (normalized by RCA mass).

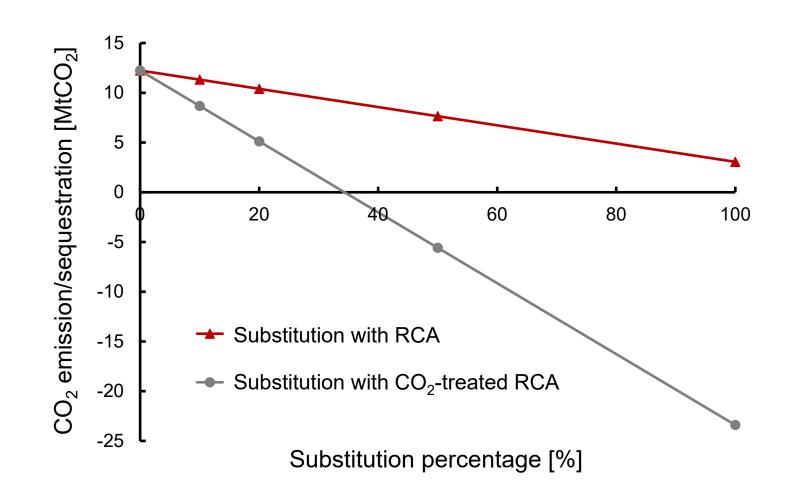
Chemical Change of Carbonated RCA



Preliminary results: The batch leaching test: (a) concentration of Arsenic (As) in the leachate water with time elapses for different CO₂ reaction pressures and (b) the concentration reduction (%) after 24 hours of time elapse with respect to the CO_2 consumption (normalized by RCA mass).

Summary of Significant Accomplishments/Key Findings (7)

CO₂ Storage Potential



The CO₂ mass consumption (normalized by RCA mass) during the carbonation reaction of RCA for various CO₂ pressure conditions.

24

Summary of Significant Accomplishments/Key Findings (8)

CO₂ Storage Potential

Annual CO_2 emission (+) or sequestration (-) potential in the United States. The red line represents the scenario in which natural aggregates (NA) are replaced with the original RCA; the gray line represents the scenario in which NA is replaced with CO_2 -treated RCA.^{*}

⁶ Additional benefits of freight reduction is not included here.

Global warming potential (GWP)

uent [kg]	GWP [kg CO ₂ - eq] ¹	Annual CO ₂ emission/ sequestration [MtCO ₂ -eq] ²
coarse es	0.0068	12.24
RCA	0.0017	3.06
ted RCA	-0.013	-23.4

¹Global warming potential;

Constit

Natural

aggregat

Original

CO₂-treat

² Based on the presumed 1,800 million tons of annual U.S. demand.

Status of Project Objectives and Tasks

Task 1.0 Project Management and Planning

Subtask 1.1 – Project management plan Subtask 1.2 – Diversity, Equity, and Inclusion

Task 2.0 Field Sampling

Subtask 2.1 – Acquisition of RCA From different locations with temp-humidity Source code for concrete mixture Origin of infrastructure, size and gradation Subtask 2.2 – Characterization of RCA Physical/mechanical properties of RCA Residual mortar content (RMC) Chemical composition \rightarrow several groups of RCA

scale reaction chamber

scale reaction chamber

CO₂ sequestration of RCA

Task 4.0 Resource Assessment Subtask 4.2 – CO₂ storage potential

Task 3.0 Lab Analysis of the Carbonation Reactions

- Subtask 3.1 Measurement of reaction kinetics at small-
 - Different RCA groups, CO₂ pressure, temperature
- Subtask 3.2 Measurement of physical and mechanical
- properties of CO₂-treated RCA
 - Physical/mechanical/chemical tests
- Subtask 3.3 Measurement of reaction kinetics at large-
- Subtask 3.4 Prediction of reaction rates and carbon
- uptake rates at anticipated field conditions
 - Solid-gas kinetic models, CO₂ mass consumption
- Subtask 3.5 Development of Protocols for Optimum
- Subtask 4.1 Resource assessment of RCA: expected resources of each RCA groups

Subtask 4.3 – Cost and market analysis: Industrial wastes and mineralization process

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts Next Steps

Table of Contents

Community Benefits Plan

- **Objective 1**: Recruit, develop, and graduate a talented and diverse pool of student.
- **Objective 2**: Perform outreach to students in minority or underrepresented groups outside of UNL/UNK.
 - UNL's Summer Research Program (SRP) to host students from teaching-oriented collages.
 - High School Research Program to provide research opportunities.
- **Objective 3**: Provide meaningful training and learning experiences to all team members to improve their understanding of diversity, equity, and inclusion concepts and enable them to apply these ideas to model behaviors.
 - Engineering and Computing Education Core (ECEC) Spring Excellence in Teaching Series focusing on teaching Ο inclusivity.
 - Workshops specifically geared towards the project team's needs related to the Complete Engineer initiative.
- **Objective 4**: Use a robust set of assessment metrics to collect and monitor data relevant to reporting and evaluating diversity, equity, and inclusion-related issues within our project team.
 - Annual evaluations to monitor plan actions described for DEI Objectives 1-3.
 - SMART milestones at the end of each project year to measure the success of the DEI plan actions.

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits/ Societal Considerations (CB/SCI) and Impacts

Next Steps

Table of Contents

Task 2.0 Field Sampling

- Subtask 2.1 Acquisition of RCA From different locations with temp-humidity Source code for concrete mixture Origin of infrastructure, size and gradation **Tentative locations:**
 - Midwest region: NE (Omaha metro), IA (Des Moines/Ames)
 - Southwest region: TX (Austin metro)
 - Southeast region: NC (Charlotte metro)
 - Northeast region: NJ (Vineland/Glassboro)

Subtask 2.2 – Characterization of RCA Physical/mechanical properties of RCA Residual mortar content (RMC) Original concrete mix design

 \rightarrow several groups of RCA

Task 3.0 Lab Analysis of the Carbonation Reactions

scale reaction chamber

scale reaction chamber

CO₂ sequestration of RCA

Next Steps

- Subtask 3.1 Measurement of reaction kinetics at small-
 - Different RCA groups, CO₂ pressure, temperature
- Subtask 3.2 Measurement of physical and mechanical
- properties of CO₂-treated RCA
 - Physical/mechanical/chemical tests
- Subtask 3.3 Measurement of reaction kinetics at large-
- Subtask 3.4 Prediction of reaction rates and carbon
- uptake rates at anticipated field conditions
 - Solid-gas kinetic models, CO₂ mass consumption
- Subtask 3.5 Development of Protocols for Optimum

Acknowledgment - Funding Supports

NEBRASKA

Good Life. Great Opportunity.

DEPT. OF ECONOMIC DEVELOPMENT

Thank you! Questions?