

CCSMR Task 4: Optical Monitoring Technology for Deep CO₂ Injection

FWP-ESD14095

LBNL: Stanislav Glubokovskikh*, Michelle Robertson, Paul Cook, Chet Hopp

GPUSA: Peter German, Dave Winslow

High-Sensitivity Vector Optical System (HS-VOS)

Seismic sensing system for *high-precision* tracking of injected CO₂/pressure

- Refining and applying a system of resilient high-fidelity seismometers
 - On hybrid wireline cable (4x copper and 18x single-mode fiber)
 - Electronics: 9-laser interrogator/demodulator recording system, w/GPS
 - Passive optical sensing, no power downhole, for up to ~3.5km depth / 200°C
 - A few semi-successful field deployments in the past
 - Preparing the system for deployment at a Carbon SAFE III site

Why optical seismometers?

ERKELEY LAB

Development of high-repeatability m-VSP in shallow boreholes

Shallow, slim, cemented boreholes can monitor the subsurface well

Case study in West Texas: Majer, Daley et al. 2008

Field deployment at a Carbon SAFE III site

Support FWP: a comprehensive borehole seismic characterization using shallow and deep boreholes

Modified statement of work and schedule due to site access issues

Re-focus on instrumentation engineering and synthetic feasibility analysis

CCSMR_T4 (\$390K) + Support_FWP (\$673K)=\$1,163K 300%

Costs increased, total outside LBNL \$780K + ...

+ ... issues with site access = ...

Modified SOW

Proposed activities in FY22:

- 1. Save money for the prime-time in FY23
- 2. Finalize the HS-VOS engineering work (\$110K)
- 3. Shallow borehole tests of the optical seismometers at the Richmond Filed Station (\$50K)
- 4. Modeling-driven optimization of the data processing/interpretation (\$60K)

HS-VOS: sensors calibration on a vibration table

Preliminary results: the sensors compares well with the best commercial analogs

Field deployment at a Carbon SAFE III site

LAB

BERKELEY

A comprehensive borehole seismic characterization using shallow and deep boreholes

Outline of the test at the Richmond Field Station, LBNL's testing facility

BERKELEY LAB

Preliminary results: uphole electronics and downhole sondes are stable+...

... +signal-to-noise ratio is high

Weight-drop 48 m form the wellhead

Preliminary results: consistent records among the sensors +...

... + but still a good example of repeatability of the VSP data

Weight-drop 48 m form the wellhead

Preliminary results: HS-VOS gives either comparable or superior signal-to-noise...

... compared with the reference accelerometer

BERKELEY LAB

Weight-drop 48 m form the wellhead

Preliminary results: HS-VOS gives either comparable or superior signal-to-noise...

... compared with the reference accelerometer

Spectrum noise

BERKELEY LAB

Weight-drop 48 m form the wellhead

Preliminary results: Reference sensors in the pod record optical noise

Preparation to the field deployment at the One Earth Sequestration site

Designed the seismic acquisition system including the instrumentation and survey design Nodal stations DAQLink 4 Helical DAS ProSeismic 150-200 m dedicated seismic borehole. Fully-cemented seismic sensors 3C geophones Silicon Audio Ultra low-noise broadband accelerometer

BERKELEY LAB

FFFFF

Legend 3D seismic footprint, 2022 OEE-1 Offset VSP shot points So Walkaway VSP Line OVSP-1 [18:Pe OVSP-1 [19:Poi OEE-1 shallow borehole-1 shallow borehole-2 OVSP-1 [12:Point OVSP-1 [11:Poin OVSP-1 [10:Point] OVSP-1 [13:Point] Google Earth

Preparation to the field deployment at the One Earth Sequestration site

Fast-track analysis of the by-product VSP suggests that the target reflections might be detectable

Project Summary

Full-on preparation to the field deployment at Carbon SAFE III

- HS-VOS system is operational as confirmed by:
 - Tests in the workshop
 - Deployment in the shallow boreholes
- Seismic survey design is done:
 - Procured the equipment for permanent deployment
 - Contract with seismic/wireline contractor is close to full execution
- Commenced the modeling-driven optimization of the data analysis:
 - Analysis of the legacy VSP data
 - Building a numerical seismic model

Potential Synergies

- Other Carbon Storage and monitoring projects in the US and abroad
 - Dry Fork CarbonSAFE Phase III (Wyoming)?
- Passive/active monitoring using shallow boreholes:
 - Full proposal submitted to DOE for a long-term monitoring at a commercial storage site in the Bay Area
- Induced seismicity monitoring and/or crosshole seismic at hot injection similar to CarbFIX 2 (Iceland)
 - Our 200C sondes are interchangeable with the 200C test sondes

Organization Chart

•

Lawrence Berkeley National Laboratory:

- Task PI, Data Lead: Stanislav Glubokovskikh
- Field Lead: Michelle Robertson
- Senior Engineer: Paul Cook
- Software Systems: Sung Choi

Illinois State Geological Survey:

- Illinois Storage Corridor PI: Roland Okwen
- Geological modeling: Sherilyn William-Stroud
- Seismic Acquisition: Curt Blakely
- PROJEO
 - Support of the field work: Nick Malkiewicz
- GPUSA:
 - Seismologist: Peter German
 - Optical Engineer: David Winslow

Benefit to the program

- Program goals being addressed:
 - Develop and validate technologies to ensure 99 percent storage permanence.
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness

- Project benefits:
 - Deployment and testing of new monitoring technologies and methodologies at an operational CarbonSAFE sites
 - Broader learnings from leveraged international research opportunities
 - Rapid transfer of knowledge to domestic programs

Gantt Chart

Task	Milestone Description*	FY23	Fis Q1	cal Yea	ar 202 : Q3	3 Q4	Planned Start Date	Planned Completion Date (Reporting Date)**	Actual Start Date	Actual End Date	Comment (notes, explanation of deviation from plan)
Milestone 4-1 (A)	Milestone 4-1: Design of the shallow seismic boreholes, optimized for the microhole VSP monitoring	Q1FY23	x				July-22	12/31/2022 (1/31/2023)	April-22	Dec-23	Completed as reported in FY23Q1 report.
Milestone 4-2 (B)	Preparation of the HS-VOS system for the deployment in a test borehole	Q2FY23		x			Aug-22	03/31/2023 (04/30/2023)	Aug-22	Aug-23	Completed as reported in FY23Q2 report.
Milestone 4-3 (C)	Analysis of selected VSP shots recorded at the OEE site in March-22	Q3FY23			х		May-23	6/30/2023 (7/31/2023)	July-23	÷	Partially completed as reported in Q3FY23
Milestone 4-4 (D)	Synthetic feasibility study of the borehole seismic monitoring system at the OEE site.	Q4FY22				x	Aug-23	9/30/2023 (10/31/2023)	Aug-23	÷	Commenced. Geological and geophysical data sets are assembled.

Bibliography

 Currently in the instrument development and testing stages, with substantial delays in 2020-2023 due to COVID-19 restrictions and issues associated with post-COVID supply chains delays and cost increases.

• No Journal publications yet for this subtask, two are in preparation

