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Why the Interest in EM Geophysics for Monitoring?

Geophysical Monitoring of CCUS
» Specific geophysical monitoring techniques are not required by the current EPA
Class VI permitting process

Seismic and CSEM comparison, Archie’s law

* Normally time lapse (4D) seismic (either VSP or surface reflection) is assumed to be : porosity = 25%
. . . s porosity = 30%
the best choice for monitoring : porosity = 35%

* Nine Class VI proposals for Region 5 currently under review involve injection into '-_ =%, P Wlocky {102

the Mount Simon Sandstone
e All nine have seismic method as their principal 3D monitoring technique
* Seven of the nine are only relying on some type of time lapse surface seismic
(they are also acquiring passive seismic data)
Possible Issues
. Mount Simon Sandstone Injections
. Many of the subunits in Mount Simon are very old and ‘stiff’ _ S
. Preferential flow in high permeability units may result in thin CO, plumes ----------
 These factors can result in very little seismic response il
Seismic velocities sensitive to low but not higher saturation changes

Schematic p-wave velocity, scale is linear
\
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As shown on the right, EM resistivity is more sensitive to high saturations, and since resistivity is primarily a function of pore
fluid rather than rock matrix, EM methods may have higher sensitivity in some cases than seismic....
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EM Measurements at The Wyoming Dry Fork Station CarbonSAFE Site
® ®

MTR's Membrane CO, Capture Process - llinois Storage C
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Map View of EM Sources and Receivers
Legend

Transmitters

North-South transmit dipole
IXNS  shown by red line

East-West transmit dipole
shown by blue line —
Connects to wellhead PRB1

Dipole connecting to
wellhead PRB1 to PRB2

Receivers

. Stationary Receivers — Do
‘*‘ SR™ " not move position day to
day

Mobile Receivers (2)
# = Day of Deployment
*=a or b receiver
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Description of EM Sources and Receivers

Blow up of Source Deployment

Receiver Deployment
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Zonge 32 bit ZEN acquisition unit used at each station

Zonge GGT-10 Transmitter used to transmit a Zonge ANT/4 Coils used for magnetic field measurement
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EM Spectral ‘Noise’” Measurements at The Wyoming Dry Fork Station
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Processed Magnetotelluric Data at The Wyoming Dry Fork Station

Site 1 oo Site 4

11/19/22
) 60 Hz ¥ 11/19/22 60 Hz
462000 463000 464000 465000 466000 467000 468000 > .
— ; o
_ g 1000 R | l
§ gr § i ‘ 4 fat ”| ' } é 2.5 A [N !
g X % M ' + by R | % ' II R ot ot "'n ' 1
a ) |
g 1 " ot
2 < 4 “
2 = 1 B S e
N3 = e ——— i et
8 v P
z b i [
o ) P
(=} - -
:‘ W [y o [} ¢ I3 W ‘::' ) W L] 7 W i
> " — ::t’:fn 1000 = fortd |
g _g 11/20/22 60 Hz It 11/20/22 60 Hz
g 3 1000 S B
8 ! | | 1 .,
= d Y ' ok 1 ; AT '
-+ i J WL i b : v
: § % |I ! SR ] ' ' & ¥
2 3 H | '
S = || 1
S 1 '
<
8 ' T
=3 ] - oo LI
) . )
5 5 5
- (0] ;
=) ' H i
465000 466000 " ]
0.001 0.01 01 1 10 100 1000 " 0001 001 041 1 10 100 1000
Frequency Frequency

reeerefeer "I|

BERKELEY LAB



Processed Magnetotelluric Data at The Wyoming Dry Fork Station
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EM Spectral ‘Noise’” Measurements at The Wyoming Dry Fork Station

Site 1 Spectra 11/20/22 Site 4 Spectra 11/20/22
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CSEM Measurements

Dry Fork Station

Site 1 Site 4
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Description of EM Sources and Receivers

Blow up of Source Deployment
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3DEM Modeling — Creation of Model
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Layered Resistivity Model

Depth Range (m) Resistivity
2‘5105290 -‘2’8 gm 1 preaii i S
- m 0

490-1110 10 Om

1110-1520 2 Om

1520-2050 4 Om 500

2050-2355 30Om

2355-2415 2 Om 1000

2415-2455 10 Om

2455-2460 3 0Om **

2460-2490 8 Om 2200

2490-2520 30Om z

2520-2540 7 Om = 3600

2540-2545 2 Om** 3

2545-2770 10 Om

2770-2805 10m 2500

2805-2850 10 Om

2850-2865 3 Om** -

2865-2885 20 Om

2885-2890 4 Om**

2890-2905 15 Om 3500

2905-2910 6 Qm**

2910-3600 20 Qm 4000

3600-inf 1000 Om

Porosity Reservoir Resistivity (Sw=1) | Fluid Resistivity | Reservoir Resistivity (Sw=0.4, Sco2=0.6)

Reservoir 1 0.35 3 0.61 30.93
Reservoir 2 0.3 2 0.42 29.46
Reservoir 3 0.2 3 0.35 54.13
Reservoir 4 0.15 4 0.30 83.33
Reservoir 5 0.1 6 0.24 153.09
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3DEM Modeling — Creation of Model

5km .-~
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.-~ EM receiver profile line Y
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Air -5 km Electrode A E|ectl’,0,d'e/B Electrode C EM receiver profile line X
. 7
Layered Earth PRB2 | (Om, Om, Om) PRB1 5 km
/// Reservoir A (Plume A):
7 < o] ¢ Before CO, injection: (pp,=4.33 Om, p,= 5.50 Om)
/,/ 200 m « After CO, injection (60% CO, saturation): (5.31 QOm, 8.58 Qm)
7 * 90m thick, radius=0.8km (early) or 4km (late)
-5km -~ Electrode D Electrode E Plume A
2260 m Casing source configurations:
Plume B Electrode F * Electrode A and B
Reservoir B (Plume B): 2990 m * Electrode Aand C
« Before CO, injection: (p,=6.61Qm, p,= 12.0 Om)  ElectrodeBandC
» After CO, injection (60% CO, saturation): ( 25.3 QOm, 43.7 Qm) * Electrode A andF
*  60m thick, radius=0.8km (early) or 4km (late) e Electrode A and E

e Electrode F and E
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3DEM Modeling — Tx with Electrodes A&F (Similar to TX200

Ex along Line X
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3DEM Modeling — Tx with Electrodes A&F (Similar to TX200

Ey along Line Y
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3DEM Modeling — Creation of Model
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Air -5 km Electrode A E|ectl’,0,d'e/B Electrode C EM receiver profile line X
. 7
Layered Earth PRB2 | (Om, Om, Om) PRB1 5 km
/// Reservoir A (Plume A):
7 < o] ¢ Before CO, injection: (pp,=4.33 Om, p,= 5.50 Om)
/,/ 200 m « After CO, injection (60% CO, saturation): (5.31 QOm, 8.58 Qm)
7 * 90m thick, radius=0.8km (early) or 4km (late)
-5km -~ Electrode D Electrode E Plume A
2260 m Casing source configurations:
Plume B Electrode F * Electrode A and B
Reservoir A (Plume B): 2990 m * Electrode Aand C
« Before CO, injection: (p,=6.61Qm, p,= 12.0 Om)  ElectrodeBandC
» After CO, injection (60% CO, saturation): ( 25.3 QOm, 43.7 Qm) * Electrode A andF
*  60m thick, radius=0.8km (early) or 4km (late) e Electrode A and E

e Electrode F and E
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3DEM Modeling — Tx with Electrodes E&F (Similar to TX300

Ex along Line X
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3DEM Modeling — Tx with Electrodes E&F (Similar to TX300

Ev along Line Y
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Lessons Learned

* EM measurements can be made adjacent to coal fired power plants, at least at
frequencies below 60 Hz

* At the Wyoming CarbonSAFE site

 MT data were able to be recovered for sites more than 2km away from the powerplant and as well
away from roads

* CSEM electric field data below 10 Hz could be recovered at the lowest frequencies within 500m of
the power plant

 Magnetic field data were more susceptible to powerplant noise due to the coils ‘clipping’ the
signal
* 3D CSEM modeling of hypothetical plume injections at the Wyoming CabonSAFE site
have shown

e Electric fields have sensitivity to the plume providing at least one of the source electrodes is
located at the bottom of a (injection) well that penetrates the injection zone

* Magnetic fields are insensitive to the resistive plume
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Benefit to Program

* In this task, LBNL has developed technologies to improve monitoring and
qguantification of an important aspect of carbon storage: geologic leakage
pathways

* The field experiment has been crucial to understand monitoring of gas-phase
CO, at intermediate depth for a leak into a secondary accumulation (“thief
zone”), and has demonstrated how gaseous CO2 in low concentrations affects

subsurface geophysical properties
* The joint use of seismic and EM methods together will ultimately allow for the

imaging of subsurface CO2 over a wide range of saturations. In this case we
investigated the changes caused by low saturations of CO,




Project Overview

Funding
» Started FY2022 with $245k in DOE funding
* Re-purposed an additional $124k (LBL PID 105405 UAE/LLNL Project) to complete work
* Currently have S32k left for presentations at this DOE program review and SEG annual
meeting, as well as to publish the results

Overall Project Performance Dates: To date Task 3 of the CCSMR program has
been funded by DOE on a year-to-year basis

Project Participants : LBL, CaMI (University of Calgary, Canada), SINTEF (Norway)

Overall Project Objectives for FY2021 Funding:
 Demonstrate, and acquire data with, LBL's borehole geophysical data acquisition systems

* Validate use of joint EM and seismic data acquisition and imaging for imaging CO, in shallow
conditions

* Validate joint-inversion technologies for higher resolution imaging
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rganizational Chart

CaMl Site Management,
University of Calgary
Don Lawton, Greg Maidment,
Marie Macquette

LBL

David Alumbaugh, LBL Project Lead

aCQurate Joint Inversion Consortium,

SINTEF, Norway
Michael Jordan

Crosswell Seismic Acquisition
Stanislav Glubokovkikh, Ed
Nichols

Crosswell Seismic Processing
Stanislav Glubokovkikh

Crosswell EM Acquisition
Mike Wilt, Ed Nichols, David
Alumbaugh

Crosswell EM Processing and
Inversion
David Alumbaugh, Kerry Key,
David Myer

Joint Inversion
Michael Commer




Gantt Chart

For FY2021 PMP-SOPO
Plume Monitoring — Joint EM and Seismic

FY 2020 FY 2021 FY 2022
a1 Q2 Q3 Q4 a1 @2 | a | aa a | @ | a3 Q4

| Task 3.1 - Crosswell Electromagnetic Surveys ’

| Task 3.2 - Crosswell Seismic S
o 2
.
| Task 3.3 Joint Inversion of Borehole Geophysical Data |

2 3

Major Milestones Other Advances

Complete Development of Sequential and Joint Inversion Capabilities f Finish Testing of Crosswell EM System at RFS
Joint Inversion of Crosswell EM and ERT Data Using the MARE2DEM Code

f Finish Testing of Crosswell Seismic System at RFS

Crosswell EM and Seismic Repeat Surveys Acquisition
! P ys Acquist f Complete first inversion of CaMI Baseline ERT Data

using MARE2DEM code

XXX

Sequential and Joint Inversio of Repeat EM, ERT, and Seismic Datasets — Not
able to complete due to insufficient seismic data quality
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