Carbon Storage Technical Viability Approach

EDX4CCS FWP, Task 21

MacKenzie Mark-Moser Geologist National Energy Technology Laboratory

NETL Carbon Management Review Meeting

Aug. 28th, 2023

Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This project was funded by the Department of Energy, through the Mickey Leland Energy Fellowship (MLEF) Program at the National Energy Technology Laboratory an agency of the United States Government, through an appointment administered by the Oak Ridge Institute for Science and Education. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MacKenzie Mark-Moser¹, C. Gabe Creason¹, Julia Mulhern^{1,2}, Jacob Shay^{1,2}, Araceli Lara^{1,3}, Kelly Rose¹

¹National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA ²NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA ³Mickey Leland Energy Fellowship, 1450 Queen Avenue SW, Albany, OR 97321, USA

Carbon Storage Technical Viability Approach (CS TVA)

EDX4CCS 21

Problem: Poor understanding of data available and a lack of workflow that incorporates CO₂ storage resources and environmental and socio-economic factors that underlie technically viable, feasible carbon storage

Key question: Where are the data?? Are they useful?

Solution: A database, evaluation criteria, and workflow that integrates these additional factors beyond technically recoverable storage resources to inform and accelerate **technically viable CS assessments** in the USA

Carbon Storage Technical Viability Approach

Three key research products:

- Carbon Storage Technical Viability Approach Matrix
 - Categorizes components of technical viability per subject domain
 - Utilized to link data types for CS TVA assessment
- Database supporting technically viable carbon storage evaluations
 - Will build from initial EY22 release
 - Interoperation with other EDX4CCS database products
- Data availability workflow for technically viable carbon storage resource assessments
 - Utilizes data analytics, models and tools to communicate the availability of data for CS TVA assessments

EDX4CCS 21 EY22 Achievements

- Design of initial version of EDX4CCS Carbon Storage Technical Viability Database
- Illinois Basin Geomodel
- Cumulative Spatial Impact Layers (CSIL) data analysis
- Release of the CS TVA Database Version 0.1
 - <u>https://edx.netl.doe.gov/dataset/edx4ccs-</u> <u>carbon-storage-technical-viability-database-</u> <u>version-0-1</u>
- Initiation of CS TVA Matrix
- Identification of key data types for CS TVA assessments

EDX4CCS 21 EY22 Challenges

- Need for singular, comprehensive criteria to inform CS technical viability assessments
- Tremendous amount of data required for complete CS TVA assessment
- Data analysis and collection efforts spread across EDX4CCS tasks
- Data are disparate, inconsistently available/updated, and variably formatted leading to analysis gaps and greater uncertainty

	Excel Task2.1 Database - Saved 🗸 📝) Search (Alt + Q)				
F	ile Home Insert Draw Page Layout	Formulas Data Review View	Help	🖉 Editing 🗸	g ^R Share ~	Comments
K,	∨ ⁽¹⁾ ✓ II ∨ B	⊞× <u>\$</u> × <u>↓</u> × … ≣× ₿	🛱 🗸 🛛 General	0. 0.+ + 00.	δ Σ ~ 2	v0.
C96	- 🔀 🖍 2021 TIGER/Line Shapefil	es (machinereadable data files) / prepared by th	e U.S. Census Bureau	u, 2021		
	c	D	E	F	G	н
1	Citation	URL Link	Date Published	REST Server URL Ga	aia Readme File	Dataset Metadat
2	U. S. Geological Survey - National Geospatial Program.	http://viewer.nationalmap.gov/viewer/		https://carto.nati P:	\01 DataOrigin	als\USA\Boundar
3	U. S. Geological Survey - National Geospatial Program.	http://viewer.nationalmap.gov/viewer/		https://carto.nati-P.	\01 DataOrigin	als\USA\Boundar
4	U. S. Geological Survey - National Geospatial Program.	http://viewer.nationalmap.gov/viewer/		https://carto.nati P.	01_DataOrigin	als\USA\Boundar
5	U. S. Geological Survey - National Geospatial Program.	http://viewer.nationalmap.gov/viewer/		https://carto.nati.P.	\01_DataOrigin	als\USA\Boundar
6	U. S. Geological Survey - National Geospatial Program.	http://viewer.nationalmap.gov/viewer/		https://carto.nati-P.	\01_DataOrigin	als\USA\Boundar
7	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
8	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
9	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
10	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
11	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
12	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
13	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
14	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
15	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
16	USGS National Ground-Water Monitoring Network	https://cida.usgs.gov/ngwmn/learnmore.jsp,	https://cida.usgs.gov	https://cida.usgs.go	v/ngwmn/web-	services.jsp
**	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and that it is a	41 + 1	3.0. 12.0		

	Excel Task2.1 Database - Saved ~	Search (Alt + Q)				
F	le <mark>Home</mark> Insert Draw Page Layout	Formulas Data Review View H	ielp	C Editing		Commen
R	· [™] · <i>≪</i> Calibri · 11 · B	⊞× <u>4</u> × <u>4</u> × … ≡× ﷺ ∎	General	√ €.0	.00 →∑ ∨	v Qv
C96	✓ ✓ fx 2021 TIGER/Line Shapefile	s (machinereadable data files) / prepared by the	U.S. Census Bureau	, 2021		
	c	D	E	F	G	н
1	Citation	URLLink	Date Published	REST Server URL	Gala Readme File	e Dataset Metada
07	2021 TIGER/Line Shapefiles (machinereadable data files) /	https://www.census.gov/geographies/mapping-f	2021			
20	2021 TIGER/Line Shapefiles (machinereadable data files) /	https://www.census.gov/geographies/mapping-f	2021			
90	2021 TIGER/Line Shapefiles (machinereadable data files) /	https://www.census.gov/geographies/mapping-f	2021			
100						
101	Office for Coastal Management, 2023: Coastal Zone Manag	https://inport.nmfs.noaa.gov/inport/item/53132	8/8/2018		P:\01_DataOrigin	n P:/01_DataOrig
102	Office of Coast Survey, 2023: Maritime Limits and Boundar	https://nauticalcharts.noaa.gov/data/us-maritim	4/11/2018		P:\01_DataOrigin	n P:\01_DataOrig
103		https://catalog.data.gov/dataset/federal-lands-o	f-the-united-states	-direct-download	P:\01_DataOrigin	nals\USA\Bounda
104						
105	om the U.S. baseline, which is recognized as the low-water I	http://www.ncddc.noaa.gov/approved recs/nos	1/30/2019		P:\01_DataOrigin	nals\USA\Bounda
106	NM State Land Office	http://rgis.unm.edu	7/20/2012			
107	NM State Land Office	http://rgis.unm.edu	7/20/2012			
108	U.S. Department of Interior, Bureau of Land Management (https://navigator.blm.gov/home	7/26/2019			
109	U.S. Department of Interior, Bureau of Land Management (https://navigator.blm.gov/home	7/26/2019			
110	U.S. Department of Interior, Bureau of Land Management	https://navigator.blm.gov/home	7/26/2019			
111	U.S. Geological Survey, Gap Analysis Program (GAP). May 2	http://gapanalysis.usgs.gov/padus/viewer/	5/5/2016		P:\01_DataOrigin	n P:\01_DataOrig

	Excel	Tas	k2.1 Databa	ise - Sa	ved ~			P Sear	ch (Alt	+ Q)		2										
File	Hor	ne	Insert	Draw	Page	Layo	ut	Formu	las	Data	Revi	ew Vi	iew	Help		Ø B	diting \	/ p	^R Share `	1] Comm	ent
9.	Ô~	4	Calibri		× 11	Y	В	E۲	4.	<u>A</u> ~		≣~	<u>ą</u> b	. ~	General	~	€0 00.	.00 -10	Σv	ZV √	۶v	ŀ
C96		~	$X \lor I$	fa 202	L TIGER/L	ine Sh	apef	les (macl	hinerea	dable da	ta files) / prepare	ed by th	e U.S. C	ensus Bureau	, 2021						
1			A					В							С						0	5
1	Dataset				Data De	script	ion					Citatio	n						URL Link			

lataset	Data Description	Citation	URL Link
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	r http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	a http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	rhttp://www.boem.gov/Natio
	Assessment of Uncacovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	Assessment of Undiscovered Technically Recoverable	Bureau of Ocean Energy Management (2016) 2016 Assess	http://www.boem.gov/Natio
	A	D	14.11. L

EDX4CCS 21 EY23 Progress to Date

- Completed Illinois Basin geomodel
- **Refined CS TVA Matrix** and **associated data types** to define criteria for CS TVA
- Continued development of CS TVA data strategy integrating EDX4CCS-generated data, databases via cross-cutting coordination
- Initiated evaluations of data science tools for incorporation into the **data availability workflow**

		Designation	Non - Viable	Possibly Non-Viable	Viable with Hurdles	Viable but Non Ideal	Fair / Decent Viability	Good Viability	Excellent Viability	Unknown Viability
	Specific Component	Determination	This component that would prevent the project from moving forward or cause it to terminate early.	This component has issues that would make the project non-economic, reduce its lifespan, or reduce total injection capacity.	This component has issues that will be detrimental to the project but can be overcome with time and /or money.	This component is not well suited for sequestration but likely not prohibitive to the project moving forward.	This component is not optimized but should be sufficient.	This component is well-suited for this project.	The component is ideal, optimized, and / or desirable for this project.	There are insufficient data available to assess this component therefore viability is unknown.
Reservoir	Porosity	Porosity	Limited porosity.	Low po	prosity.	Low to moderate porosity.	Moderate porosity.	Good porosity.	Excellent porosity.	Unknown porosity.
Quality	Permeability	Impact of permeability on injectivity.	Limited permeability will prevent injectivity.	Limited permeability will hinder injectivity.	Low permeability d	ecreases injectivity.	Moderate permeability.	Good permeability.	Excellent and extensive permeability.	Unknown permeability.

- Illinois Basin Geomodel (6/2023, complete)
- CS TVA Matrix (11/2023)
- CS TVA Database Version 1.0 (11/2023)
- Data availability workflow (03/2024)
- Fuzzified national assessment of CS TVA data availability **(03/2024)**

Benefits:

- Integrates products from EDX4CCS portfolio
- Informs availability of key data resources for carbon storage technical viability analysis
- **Provides a foundation** for assessing carbon storage technical viability

Carbon Storage Technical Viability Approach Workflow

- Challenges: abundant, yet disparate and variably formatted data leads to gaps in understanding of CS system
- Proposed approach:
 - Assess data resources for CS **technically viability** to highlight ideal basins and data/knowledge gaps

Goals:

- Leverage FECM NETL tools and methods for use in multi-scale analytical workflow
- **Demonstrate workflow at national scale** with existing data resources
- Integrate data from crosscutting EDX4CCS tasks

Conveys CS viability in a region of interest <u>based on the</u> <u>data available</u> and informs storage resource estimates

- CS TVA workflow in conceptualization stage
- Iterative approach between CS TVA matrix database workflow
- Data availability analyses and technical viability assessment are two key components of the Carbon Storage Technical Viability Approach (CS TVA)

Carbon Storage Technical Viability Approach Workflow

ЫĽ

ATIONAL

Carbon Storage Technical Viability Approach Matrix

Carbon Storage Technical Viability Approach

Matrix is a criteria for systematic evaluation of the availability of data for the CS TVA

- Criteria include reservoir suitability, retention and geomechanical risk, hazards, siting/regulatory/political considerations, and environmental/social justice, community impacts
- Criteria are divided into categories, then subdivided into components and their determination
- Data required for each determination are mapped to the CS TVA categories

See poster by Mulhern et al. in the Carbon Transport and Storage section

NATIONAL

TECHNOLOGY

Carbon Storage Technical Viability Approach Matrix

Carbon Storage Technical Viability Approach Matrix

Data required are mapped to each category and subcategory

 Reflects multidisciplinary requirements of geologic carbon storage projects

		<u>Technie</u>	cal Viabil	ity Asses	sment I	Method	
Non-Viable	Possibly Non- Viable	Viable with Hurdles	Viable but Non-Ideal	Fair/Decent Viability	Good Viability	Excellent Viability	Unknown Viability
This component would prevent the project from moving forward or cause it to terminate early.	This component has issues that would make the project non-economic, reduce its lifespan, or reduce total injection capacity.	This component has issues that will be detrimental to the project but can be overcome with time and/or money.	This component is not well suited for sequestration but likely not prohibitive to the project moving forward.	This component is not optimized but should be sufficient.	This component is well-suited for this project.	The component is ideal, optimized, and/or desirable for this project.	There are insufficient data available to asses this component therefore viability unknown.
₽	\$	\$		•		\$	•

Emphasizes need for data availability workflow to indicate gaps, support future database releases, and eventual CS TVA assessment

See poster in the Carbon Transport and Storage section

Carbon Storage Technical Viability Database

Database to support carbon storage technical viability analytics (released 6/2023)

- Subsurface/physiographic and socioeconomic spatial feature datasets
 - Currently >1,200 shapefiles, >40 GB of data combined
 - >51,000,000 features in the socioeconomic database
- v0.1 contains initial pass of available data; v1.0 will contain updates, additional file types, and newly released subsurface analysis data based on CS TVA Matrix

Carbon Storage Technical Viability Database

- Use of the CS TVA Matrix to inform future database collections
- Data required for each component of the CS TVA is identified
- Publicly available data that is not available in other EDX4CCS databases will be gathered into Carbon Storage Technical Viability Database Version 1.0
- Exploring options for coordinated, interoperable databases to be released via DisCO2ver

Carbon Storage Technical Viability Database

NATIONAL

Carbon Storage Technical Viability Approach Data Analytics

Cumulative Spatial Impact Layers

- Visualize a summary of data availability
- United States subsurface data supporting carbon storage technical viability analyses summarized using Cumulative Spatial Impact Layers (Romeo et al., 2019)
- Future applications: incorporate cross-cutting databases from EDX4CCS tasks

Romeo, L., Nelson, J., Wingo, P., Bauer, J. (2019) Cumulative Spatial Impact Layers: A novel multivariate spatio-temporal analytical summarization tool. Transactions in GIS, 23 (5)

Carbon Storage Technical Viability Approach Data Analytics

NATIONAL ENERGY TECHNOLOGY LABORATORY

Variable Grid Method data density analysis

- Oil and gas well data density analyzed using Variable Grid Method (Bauer et al., 2015)
- Future applications: Integrate additional data types for multivariate uncertainty analysis
- Visualize data uncertainty and density

Bauer, J. and Rose, K. (2015) Variable grid method: An intuitive approach for simultaneously quantifying and visualizing spatial data and uncertainty. Transactions in GIS.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Subsurface Trend Analysis

- Incorporates geologic knowledge and quantitative data when available to define geologic domains (Rose et al., 2020)
- Multiple uses of the STA:
 - Constrain predictive analytics, fuzzy logic
 - Produce interpolations for data gaps
- Structural and lithologic domains drafted for the Illinois Basin geomodel region, next step is finalizing geologic domains
- Future applications: potential inputs for fuzzified national assessment, data gaps interpolations

Rose, K., Bauer, J., Mark-Moser, M. (2020) A systematic, science-driven approach for predicting subsurface properties. AAPG Interpretation, 8, (1), T167-T181

Data availability analysis using fuzzy lagis via component of

Data availability analysis using fuzzy logic via component of the Unconventional Rare earth and Critical minerals (URC) Tool (Creason et al., 2023)

- Indicates the data available to analyze carbon storage technical viability
- Utilizes fuzzy logic, a decision-making process that incorporates uncertainty and ambiguity in the data and qualitative processes
- Future applications: fuzzified national CS data availability assessment; analyze data uncertainty and availability

Carbon Storage Technical Viability Approach Data Analytics

Creason, C.G., Justman, D., Rose, K., Montross, S., Bean, A., Mark-Moser, M., Wingo, P., Sabbatino, M., Thomas, R.B. 2023. A Geo-Data Science Method for Assessing Unconventional Rare-Earth Element Resources in Sedimentary Systems. Natural Resources Research.

URC

Summary

Challenges

- Defining carbon storage technical viability
- TREMENDOUS amount of data required for comprehensive CS • technical viability assessment
- Data are disparate, inconsistently available, and variably ٠ formatted leading to analysis gaps and greater uncertainty

Proposed Approach

- Carbon Storage Technical Viability Matrix •
- Database supporting technically viable carbon storage evaluations
- Data availability workflow for technically viable carbon ٠ storage assessments

Upcoming products

- Finalized CS TVA Matrix (11/2023)
- CS TVA Database Version 1.0 (11/2023)
- Detailed data availability workflow (03/2024)
- Fuzzified national assessment of CS TVA data availability (03/2024)

EDX4CCS 21

Illinois Basin geo-model developed using EDX4CCS data, in coordination with NRAP efforts for subsurface property analysis and basin-scale CS risk modeling

Acknowledgments

EDX4CCS 2.1

This work was performed in support of the U.S. Department of Energy's (DOE) Fossil Energy and Carbon Management's EDX4CCS Project, in part, from the Bipartisan Infrastructure Law .

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

POCs

MacKenzie Mark-Moser, <u>mackenzie.mark-moser@netl.doe.gov</u> C. Gabe Creason, <u>Christopher.creason@netl.doe.gov</u> Kelly Rose, <u>Kelly.rose@netl.doe.gov</u>

