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Problem Statement and Technical Objective
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Challenge 2: Expensive Geophysical
Monitoring
The high financial/computational cost and subjective human factors
hinders the applicability of the existing monitoring methods.

Challenge 1: Unsatisfactory Detectability
Current geophysical monitoring methods do not yield sufficient detectability 
to capture very small leakage (due to limitations in data coverage, low spatial 
resolution, acquisition noise and artifacts, etc.)

Objective: Capture very small CO2 or 
brine leakage over large area
1. Is there a leak? 
2. How much has leak? 
3. Where is the leak?

Small Leakage Detection
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GeoVision: Seismic Imaging & Inversion Suite – an Overview
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M
odels

Unsupervised
[Jin et al. (2021)]

Function Operator
[Zhu et al. (2023)]

Semi-supervised
[Zhang & Lin (2020)]

Supervised
[Wu & Lin (2019)]

Physics Simulations
[Lin et al. (2018)]

Transfer Learning
[Zhang & Lin (2019)]

Active Learning
[Gomez et al. (2020)]

Open Data
[Deng et al. (2022)]

Style Learning
[Feng & Lin (2021)]

Lightweight
[Feng et al. (2022)]

2D/3D Imaging
[Zeng et al. (2021)]

Time-Lapse
[Liu et al. (2022)]

Uncertainty
[Liu et al. (2022)]

Multiphysics
[Feng et al. (2022)]

Induced Seismic
[Zhang et al. (2022)]
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GeoVision Driven by Physics and Machine Learning
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What is GeoVision?

InversionNet

Yue Wu and Youzuo Lin, “InversionNet: An Efficient and Accurate Data-driven Full Waveform Inversion,” IEEE Transactions on Computational Imaging, 6(1):419-433, 2019. 

• Collection of site-agnostic geophysical imaging techniques 

• Based on physics-guided machine learning

Explore two imaging models:
• Purely Data-driven Neural Networks [Wu and Lin, (2019)]

• Real-time 2D/3D CO2 Plume Imaging (Saturation)

• Leakage Detection

• Uncertainty & Risk Estimate (Data and Model Error)

• Physics-guided Unsupervised Networks [Jin et al. (2022)]

• Enable Imaging without any Label Information Physics-guided Unsupervised Networks [Jin et al., 2022]

Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin, "Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop", ICLR, 2022. 
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GeoVision Driven by Physics and Machine Learning
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GeoVision Enhanced by Large-Scale High Quality Training Data
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OpenFWI (https://openfwi-lanl.github.io/)

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng, Yingpeng Chen, and Youzuo Lin, "OpenFWI: Large-scale Multi-structural Benchmark Datasets for Full 
Waveform Inversion", NeurIPS, 2022. 

Data Overview

Overview Background Current Status Summary

First Large-Scale Multi-Structural 
Benchmark Acoustic Datasets

 Multi-scale and multi-dimension
 Over 180K of acoustic waveform samples 

 Each sample: Label—Velocity model; Data—Seismic data

 Acoustic wave equation with constant density

 Total 12 sub-datasets: 2D (11 datasets) and 3D (1 dataset)

 Multiple applications with various geo-structures

 Clean energy (CCUS), renewable energy, and general purposes

https://openfwi.github.io/


GeoVision Enhanced by Large-Scale High Quality Training Data
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𝔼𝔼FWI: Multiparameter Benchmark Datasets for Elastic Seismic Inversion

Shihang Feng, Hanchen Wang, Chengyuan Deng, Yinan Feng, Yanhua Liu, Min Zhu, Peng Jin, Yinpeng Chen, Youzuo Lin, "𝔼𝔼FWI: Multi-parameter Benchmark Datasets for Elastic Full Waveform Inversion 
of Geophysical Properties, " arXiv, 2023 (Under Review in NeurIPS).

 Why need 𝔼𝔼FWI

 More realistic & precise representation of 

subsurface

 Poisson's ratio (𝑃𝑃𝑟𝑟) serve as essential 

indicators in characterization of reservoir

 What is new in 𝔼𝔼FWI

 Contain  a total of 8 distinct 2D sub-

datasets 

 Include multi-parameters (𝑣𝑣𝑝𝑝, 𝑣𝑣𝑠𝑠, 𝑃𝑃𝑟𝑟)

 Produce benchmark elastic inversion 

using three methods: 𝔼𝔼lasticNet, 

𝔼𝔼laticGAN, and 𝔼𝔼lasticTransformer

Gallery of 𝔼𝔼FWI[Feng et al., 2023]
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Project Scope: Task & Milestone
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FY 18
Project Kick-off

FY 19
Task 1 Completion

Task 2 Completion
FY 20

FY 22

Major Milestone
− Project Kick-off
 Preliminary Study & Data Preparation

− R&D Tasks
 Task 1 – Synthetic Data Test (Kimberlina 1.2)
 Task 2 – Controlled Experiment Test 1 (Cranfield)
 Task 3 – Controlled Experiment Test 2 (Sleipner)
 Task 4 – Controlled Experiment Test 3 (San Juan)

Task 4 Starts

FY 21
Task 3 Completion

Overview Background Current Status Summary

We Are Here! FY 23



Previous Task 1: Leakage Detection using Kimberlina 1.2 Data
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a

Leakage Mass Detection
[Zheng et al., 2019]

b c d

Ground Truth
[Gomez et al., 2020]

Traditional 
[Gomez et al., 2020]

GeoVision 
[Gomez et al., 2020]

• GeoVision learns critical information from massive amount of data to predict leakage mass and plume.

• Collaboration with Zan Wang and Bob Dilmore via NRAP.

Zheng Zhou, Youzuo Lin, Zhongping Zhang, Yue Wu, Zan Wang, Robert Dilmore, and George Guthrie, "A Data-Driven CO2 Leakage Detection Using Seismic Data and Spatial-Temporal Densely Connected 
Convolutional Neural Networks," International Journal of Greenhouse Gas Control, Vol 90, 2019. 
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Previous Task 2: Leakage Detection using Cranfield Data
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a b

• GeoVision, trained on non-leak temporal pressure data, can predict leakage.

• Through the collaboration with Alex Sun and BEG. 

Saurabh Sinha, Rafael Pires de Lima, Youzuo Lin, Alexander Y. Sun, Neill Symons, Rajesh Pawar, and George Guthrie, “Normal or Abnormal? Machine Learning for the Leakage Detection in Carbon 
Sequestration Projects Using Pressure Field Data,” International Journal of Greenhouse Gas Control, Vol. 103, 2020.

Signature Prediction
[Sinha et al., 2020]

Leakage Detection
[Sinha et al., 2020]

Train 
(Non-leak)

Test 
(Non-leak)        

Test 
(Leak)        

Train 
(Non-leak)

Test 
(Non-leak)        

Test 
(Leak)        
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Previous Task 3: In-Situ Monitoring using Sleipner Data
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When sufficiently trained, ML can fill in the gap of static data to inform the dynamics of the plume. 

Shihang Feng, Xitong Zhang, Brendt Wohlberg, Neill Symons, and Youzuo Lin “Connect the Dots: In Situ 4D Seismic Monitoring of CO2 Storage with Spatio-temporal CNNs,”  IEEE Transactions on 
Geoscience and Remote Sensing, vol 60, 1-- 16 2021.

In-situ Monitoring
[Feng et al., 2021]

Repeated Seismic Acquisition (10 years)

0

5

10

15

1990 1995 2000 2005 2010 2015

Injection Mass (Mt)

a b
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Task 4: Time-lapsed Imaging using San Juan Basin Data
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• Collaboration with William Ampomah (NMT) via CarbonSAFE. 

San Juan Basin Dataset 
(CarbonSAFE) 

• Data Availability
 Baseline velocity model built from well logs
 Time-lapse velocity models built from reservoir simulation (100 yrs)
 Seismic Data Simulation (5 sources and 70 receivers) 

Injection 
History

Pre-Injection Injection Post Injection

30 yrs 20 yrs 50 yrs

San Juan Basin
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Task 4: Leakage Monitoring using San Juan Basin Data
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a b c d

Baseline Velocity Baseline Seismic Time-lapse Velocity Time-lapse Seismic

FY 22 Focuses on Time-lapse Imaging

• Employ GeoVision to monitor change

• Baseline obtained by physics methods

Overview Background Current Status Summary

FY 23 Focuses on Baseline Imaging

• Sub-Task 1: Supervised Learning

• Sub-Task 2: Unsupervised Learning



Task 4.1: Fully Supervised Learning – InversionNet
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Yue Wu and Youzuo Lin, “InversionNet: An Efficient and Accurate Data-driven Full Waveform Inversion,” IEEE Transactions on Computational Imaging, 6(1):419-433, 2019. 

where 𝑔𝑔𝜃𝜃 � is the network with trainable weights 𝜃𝜃, ℒ(�,�) is a loss function, and 𝜙𝜙𝑠𝑠 represents a supervised 
dataset with both velocity map 𝑣𝑣𝑖𝑖 and seismic data 𝑝𝑝𝑖𝑖 being available.  

𝜐𝜐 𝑝𝑝 = 𝑔𝑔𝜃𝜃∗ 𝑝𝑝 ; 𝑠𝑠. 𝑡𝑡. 𝜃𝜃∗ 𝜙𝜙𝑠𝑠 = argmin
𝜃𝜃

�
(𝜈𝜈𝑖𝑖,𝑝𝑝𝑖𝑖)𝜖𝜖𝜙𝜙𝑠𝑠

ℒ(𝑔𝑔𝜃𝜃 𝑝𝑝𝑖𝑖 , 𝑣𝑣𝑖𝑖)

Image-to-Image Translation
 Treat both input and output as images

 No initial guess needed

 Fully supervised learning strategy

 Both data and label needs to be availability

 Physics is implicitly embedded in pair-wised data

 Train 𝒈𝒈𝜽𝜽∗ 𝒑𝒑 on a subdomain 𝝓𝝓𝒔𝒔

 Applicable to many samples drawn from 𝜙𝜙𝑠𝑠

End-to-End Learning of  “Inversion Operator”: 𝑔𝑔𝜃𝜃∗ � ≈ 𝑓𝑓−1 �

InversionNet [Wu & Lin, 2019]

Introduction Data-Driven Models Hybrid Models Summary



Task 4.1: Fully Supervised Learning – Open Dataset
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OpenFWI Dataset
 Dataset: OpenFWI – Select 10 2D subsets

 FlatVel-A (FVA), FlatVel-B (FVB), 

 CurveVel-A (CVA), CurveVel-B (CVB),

 FlatFault-A (FFA), FlatFault-B (FFB),

 CurveFault-A (CFA), CurveFault-B (CFB)

 Style-A (STA), Style-B (STB)

Overview Background Current Status Summary

Hanchen Wang, Youzuo Lin, Shihang Feng, Peng Jin, Xitong Zhang, Yinpeng Chen, Rajesh Pawar, and George Guthrie, ” Supervised vs. unsupervised deep learning full waveform inversion: a case study 
at CCUS site, San Juan NM", IEEE IGRSS, 2023. 



Task 4.1: Fully Supervised Learning – Results
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a b

Ground Truth Result

Overview Background Current Status Summary

Hanchen Wang, Youzuo Lin, Shihang Feng, Peng Jin, Xitong Zhang, Yinpeng Chen, Rajesh Pawar, and George Guthrie, ” Supervised vs. unsupervised deep learning full waveform inversion: a case study 
at CCUS site, San Juan NM", IEEE IGRSS, 2023. 

 InversionNet trained on OpenFWI

produces reasonable estimation of the 

baseline velocity model.

 High-frequency velocity components 

need to be further improved. 



Task 4.2:  Unsupervised Learning – UPFWI
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Unsupervised Physics-informed 
Full Waveform Inversion

Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin, "Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop", ICLR, 2022. 

Structure of UPFWI [Peng et al., 2022] 

 Built on InversionNet

 Leverage the same encoder-decoder 

 Incorporate wave physics 

 Provide strong physics-based 

regularization explicitly

 Shift the paradigm from supervised to 

unsupervised learning

 Training & Testing Strategies

 Train Phase: Use the whole network (i.e., the encoder-decoder with physics regularization)

 Test Phase:  Use only the encoder-decoder network for imaging

Overview Background Current Status Summary



Task 4.2:  Unsupervised Learning – UPFWI
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Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin, "Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop", ICLR, 2022. 

where 𝑡𝑡 and 𝑧𝑧 denote time and depth, respectively; 𝑝𝑝(𝑡𝑡, 𝑧𝑧) denotes the pressure field; 𝑣𝑣 𝑧𝑧 represents the acoustic 
wave velocity, 𝑠𝑠(𝑡𝑡, 𝑧𝑧) is the source function.   

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2

= 𝑣𝑣2(𝑧𝑧) 𝜕𝜕2𝑝𝑝
𝜕𝜕𝑧𝑧2

+ 𝑠𝑠(𝑡𝑡, 𝑧𝑧)1D Acoustic Wave Equation:

Discretization via Finite Difference (2nd order approximation)

 𝑝𝑝𝑖𝑖𝑛𝑛+1 − 2 + 𝛼𝛼𝑣𝑣𝑖𝑖2∇2 𝑝𝑝𝑖𝑖𝑛𝑛 + 𝑝𝑝𝑖𝑖𝑛𝑛−1 = 𝑠𝑠𝑖𝑖𝑛𝑛+1, where 𝛼𝛼 = ∆𝑡𝑡2

∆𝑧𝑧2
, 𝑣𝑣𝑖𝑖denote the acoustic velocity at all 𝑛𝑛𝑛𝑛 model grid points, and ∇2denotes 

the discrete Laplace operator.

A Neat Matrix-Form Representation
 𝐏𝐏𝑛𝑛+1 = 𝐆𝐆𝐏𝐏𝑛𝑛 − 𝐏𝐏𝑛𝑛−1 + 𝐒𝐒𝑛𝑛+1 , where 𝐆𝐆 = 2𝐈𝐈 + 𝐀𝐀𝐀𝐀, and 𝐀𝐀 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝛼𝛼𝑣𝑣𝑖𝑖2}, 𝐋𝐋 =

−2 1
1 −2 1

⋱ ⋱ ⋱
𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛

Overview Background Current Status Summary



Task 4.2:  Unsupervised Learning – UPFWI
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Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin, "Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop", ICLR, 2022. 

Forward Wave Propagation Network

Matrix-Form Representation

 𝐏𝐏𝑛𝑛+1 = 𝐆𝐆𝐏𝐏𝑛𝑛 − 𝐏𝐏𝑛𝑛−1 + 𝐒𝐒𝑛𝑛+1 , 

where 𝐆𝐆 = 2𝐈𝐈 + 𝐀𝐀𝐀𝐀

 Future state can be calculated as multiple 

differentiable operations:

Element-wise 

addition/subtraction/multiplication

Convolution 

Overview Background Current Status Summary



Task 4.2:  Unsupervised Learning – UPFWI

21

 InversionNet: 𝜐𝜐 𝑝𝑝 = 𝑔𝑔𝜃𝜃∗ 𝑝𝑝 ; 𝑠𝑠. 𝑡𝑡. 𝜃𝜃∗ 𝜙𝜙𝑠𝑠 = argmin
𝜃𝜃

�
(𝜈𝜈𝑖𝑖,𝑝𝑝𝑖𝑖)𝜖𝜖𝜙𝜙𝑠𝑠

ℒ 𝑔𝑔𝜃𝜃 𝑝𝑝𝑖𝑖 , 𝑣𝑣𝑖𝑖 ,

𝜐𝜐 𝑝𝑝 = 𝑔𝑔𝜃𝜃∗ 𝑝𝑝 ; 𝑠𝑠. 𝑡𝑡. 𝜃𝜃∗ 𝜙𝜙𝑢𝑢 = argmin
𝜃𝜃

�
𝑝𝑝𝑖𝑖𝜖𝜖𝜙𝜙𝑢𝑢

ℒ(𝒇𝒇(𝑔𝑔𝜃𝜃 𝑝𝑝𝑖𝑖 ),𝑝𝑝𝑖𝑖), UPFWI:

ℒ 𝑝𝑝, �𝑝𝑝 = 𝜆𝜆1ℓ1 𝑝𝑝, �𝑝𝑝 + 𝜆𝜆2ℓ2 𝑝𝑝, �𝑝𝑝 + 𝜆𝜆3ℓ1 𝜓𝜓(𝑝𝑝),𝜓𝜓( �𝑝𝑝) + 𝜆𝜆4ℓ2 𝜓𝜓(𝑝𝑝),𝜓𝜓( �𝑝𝑝) .

 Data Loss: ℓ1 𝑝𝑝, �𝑝𝑝 , ℓ2 𝑝𝑝, �𝑝𝑝
 To measure seismic data pixel-wise 

differences in ℓ1 and ℓ2 distances.

 Perceptual Loss: ℓ1 𝜓𝜓(𝑝𝑝),𝜓𝜓( �𝑝𝑝) , ℓ2 𝜓𝜓(𝑝𝑝),𝜓𝜓( �𝑝𝑝)
 To capture region-wise structure and encourage 

waveform coherence. VGG-16

Data Loss Perceptual Loss

where 𝒇𝒇(�) is the forward modeling operator, and

where𝑔𝑔𝜃𝜃 � is the network with trainable weights 𝜃𝜃.
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Task 4.2:  Unsupervised Learning – Results
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a b

Ground Truth Result

Overview Background Current Status Summary

Hanchen Wang, Youzuo Lin, Shihang Feng, Peng Jin, Xitong Zhang, Yinpeng Chen, Rajesh Pawar, and George Guthrie, ” Supervised vs. unsupervised deep learning full waveform inversion: a case study 
at CCUS site, San Juan NM", IEEE IGRSS, 2023. 

 UPFWI trained on unlabeled data 

produces reasonable estimation of the 

baseline velocity model.

 Some artifacts are generated in the 

deep region. 



Summary
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Machine 
Learning

Physics 
Knowledge

Data 
Scarcity

GeoVision
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