SimCCS: An Open-source Toolset for Regional CCS Infrastructure Decision Support FWP-FE-1207-20-FY21

Bailian Chen Los Alamos National Laboratory

LA-UR-23-29749

U.S. Department of Energy FECM/NETL Carbon Management Research Project Review Meeting August 28 – September 1, 2023

Project Participants

- LANL: Martin Ma, Bulbul Ahmmed, Mohamed Mehana, Richard Pratt, Meng Meng, Rajesh Pawar
- Resources for the Future (RFF): Alan Krupnick, Shih-Shyang Shih, Alexandra Thompson

Project Scope

- Produce a toolset that can be utilized by a range of users to help address emerging CCUS infrastructure deployment challenges including,
 - National-scale, regional-scale deployment
 - Phased deployment
 - Account for disadvantaged communities per Justice40 initiative
 - Account for environmentally sensitive areas
 - Dynamic nature of future CO₂ capture (decommissioning of sources, new sources, variable capture amounts)
 - Potential utilization of existing CO₂ pipelines and ROWs
 - Onshore and offshore transport and storage

Technology Background

 SimCCS: determines costs and optimized pipeline routing by integrating factors across the CCUS value chain

• NICO₂LE

- Understand commercial-scale capture opportunities.
- Geodatabase: Source locations, CO₂ streams, & capture costs.
- SCO_2T
 - Rapidly calculate injectivity & storage resource & costs.

• CostMAP

- Identify likely corridors.
- Develop candidate pipeline routes for *SimCCS* optimization engine.

SimCCS is publicly available @ https://simccs.lanl.gov/

Technology Background

 SimCCS: determines costs and optimized pipeline routing by integrating factors across the CCUS value chain

- LANL is utilizing *SimCCS* to support infrastructure modeling:
 - National scale CCS pipeline network modeling
 - Three regional CCUS initiatives (CUSP, SECARB-USA, MRCI)
 - One energy transition initiative (I-WEST)
 - CarbonSAFE initiative

FY23 Work Scope

- T1: Extend the capability to take into account existing pipeline ROWs.
- T2: Extend the capability to model offshore CO₂ transport infrastructure development
- T3: Develop capability to take into account storage site risks
- T4: Extend SCO₂T storage model to depleted hydrocarbon (HC) bearing reservoirs
- T5: Extend the capability to account for environmentally sensitive areas to national scale

Technical Progress

T1: Implementation of Capability to Take into Account Existing Pipeline ROWs

- There are over 3 million miles of existing pipelines to transport various types of liquid or gas
- The proper usage of existing pipeline ROWs would significantly reduce the overall CO₂ transport cost

(a) Cost weight: 1.0 (do nothing)Total pipeline length: 3632 km9% pipelines using existing ROWs

(b) Cost weight: 0.75Total pipeline length: 3674 km49% pipelines using existing ROWs

(c) Cost weight: 0.3Total pipeline length: 3960 km84% pipelines using existing ROWs

T2: Implementation of Capability for Offshore Transport Modeling

- Generated new cost surface which includes the bathymetry and shipping route data
- Developed and implemented cost models for CO₂ offshore transport: pipeline & shipping
- Updated GUIs for SimCCS and CostMAP

T2: Implementation of Capability for Offshore Transport Modeling

- Generated new cost surface which includes the bathymetry and shipping route data
- Developed and implemented cost models for CO₂ offshore transport: pipeline & shipping
- Updated GUIs for SimCCS and CostMAP

T3: Implementation of Capability to Account for the Storage Site Risk

 Developed and implemented approach to account for the storage site risk due to leakage from legacy wells and induced seismicity

Optimized pipeline route by increasing the legacy well density at sites K1 and K2 11

T4: Extend SCO₂T Storage Model to Depleted HC Bearing Reservoirs

Developed reduced-order models (ROMs) for the predictions of injectivity and CO₂ plume areas

ROMs performance of the injection rate in MMt/year

ROMs performance of plume area prediction in mile²

T4: Extend SCO₂T Storage Model to Depleted HC Bearing Reservoirs

- Estimates of CO₂ storage resource and cost (hypothetical case)

T5: Extend the Capability to Account for Environmentally Sensitive Areas to National Scale

- Created a set of geospatial layers (e.g., critical habitat, parks, historic/cultural areas, permanently protected areas) in cost surface
- Conducting case studies to investigate the impact of environmentally sensitive areas on pipeline routing

Application: National Scale CCS Pipeline Network Modeling (FY23)

- Objective: Use *SimCCS* platform to understand potential national scale CCS infrastructure deployment scenarios
- In coordination with DOE-FECM
- In collaboration with OnLocation Inc.

CO₂ Source Locations – Comparison Across Scenarios

Low CO₂ Removal: advanced technology in all sectors hence a low need for CO₂ removals

High CO₂ Removal: standard technologies in all sectors except electricity, requiring highest level of CO₂ removals

CO₂ Storage Resource & Costs (Saline Aquifer Only)

Storage resource (GtCO₂)

Storage cost (\$/tCO₂)

17

High Removal (HR) Scenario – Evolution of Pipeline Infrastructure

18

High Removal (HR) Scenario – Evolution of Pipeline Infrastructure

High Removal (HR) Scenario – Evolution of Pipeline Infrastructure

High Removal (HR) Scenario – Pipeline Infrastructure in 2050

Total pipeline length: 28,130 miles
> By 2035: 25,317 miles (90%)

Low Removal (LR) Scenario – Evolution of Pipeline Infrastructure

Low Removal (LR) Scenario – Pipeline Infrastructure in 2050

Total pipeline length: 26,078 miles
> By 2035: 24,431 miles (93.7%)

High Removal (HR) vs. Low Removal (LR)

Summary

- *SimCCS* has been demonstrated to be an effective toolset to support the CCS pipeline infrastructure decision making
- New features such as utilization of existing pipeline ROWs, offshore transport, storage site risk factor, and HC-bearing storage model, have been implemented in *SimCCS* for transport modeling in FY23
 - More to come in FY24, e.g., unified platform, multi-modal modeling, and critical safety and risk assessment
- National CCS pipeline modeling results indicate
 - ~26,000-28,000 miles of new pipelines will need to be constructed to capture and storage the emissions (as identified in OnLocation scenarios)
 - The eastern, mid-western, western regions of US will need to have higher number of trunk lines to facilitate transport of captured CO_2 ²⁵

Thank you bailianchen@lanl.gov

Backup

 Developed and implemented approach to account for the storage site risk due to leakage from legacy wells and induced seismicity

Relative increase in storage cost withrespective-to the base scenario

Optimized pipeline route by increasing the legacy well density at sites K1 and K2

CO₂ Capture Targets – Comparison Across Scenarios

Milestone Status

- M1 Complete the implementation of the capability to take into account existing pipeline ROWs.
 - Status Successfully completed on 12/31/2022
- M2 Complete data collection for offshore storage sites.
 - Status Successfully completed on 12/31/2022
- M3 Complete the physics-based training simulations and the development of the ROMs to predict CO₂ storage resource in depleted oil reservoirs.
 - Status Successfully completed on 12/31/2022
- M4 Complete the implementation of economic models in SCO₂T-OG to assess the CO₂ injectivity, storage resource & costs of storing CO₂ in depleted oil/gas reservoirs.
 - Status Successfully completed on 03/31/2023

.

٠

- M5 Complete the development of transport cost models for pipeline and ship/port-based CO₂ transport under the context of offshore storage.
 - Status Successfully completed on 07/31/2023
- M6 Complete the implementation of risk factors for storage reservoirs in pipeline network modeling.
 - Status Successfully completed on 07/31/2023
 - M7 Complete the implementation of the functionality for pipeline modeling with the constraint of environmentally sensitive areas in national scale.
 - Status No Cost Extension; to be completed on 9/30/2023