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Motivation

Goal
* Design optimal devices for adsorption-based Direct Air Capture (DAC)
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Topology Optimization Framework

Geometrical setup, Physical and
numerical

technologies within the Topology Optimization (TopOpt) framework that are roea Rl ey e The computational domain Q with flow constants definition. starting
suitable for scale-up. boundary conditions on 0€ contains point y

State-of-Art material distributed as solid and void, § <

- . . o S based on the local y(r) values of each Densite Filter on

The use of DAC is imperative to handle hard-to-avoid CO, emissions L1, el element. The local inverse permeability v !
Contactor design improvements paired with sorbent material development is] | ot o e a(r) in the N-S equations 1s parameterized ]
necessary for optimal devices that can be scaled-up. Iv— y=1 using the local y(r) ¥, ranging between the Solve for the current y the coupled PDE
TopOpt has been used successfully for optimal structures in complex systems like limits of the open pore y = 1 and dense by FEM “;jl?;l;oég?‘;fcqwe the
flow batteries 2] and porous electrodes [3. material y = 0. 3 =
Computational Fluid Dynamics (CFD) is the only tool that can

quantitatively predict the effect of design parameterization on device
performance.

Combining CFD and TopOpt is a powerful tool for seeking optimal device
design for a given material.

Approach follows:

Topology Optimization is a mathematical framework used to determine the
optimal material distribution within a given design domain with respect to a

Unique application of topology optimization.

Compute the objective function @,
Methodology ’ lter—iter
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* The iterative algorithm 1is carried out in the software COMSOL Compute the sensitivities by the adjoint
Multiphysics through LiveLink™, the COMSOL/MATLAB interface, as method, formulating appropriately the

« The Navier Stokes and mass transport equations at the k™ iteration are
solved with a specific “guess” of the design variable y4(r) producing

certain objective function (e.g. adsorption rate). the finite element solution u*(y(r)). { &
Chall  Sensitivity analysis 1s performed, where the gradient of the objective
et function and associated constraints are evaluated as well as the adjoint

equations for the Lagrange multipliers p*. The design variable is

problem in Comsol

L

Update design variable by calling the
chosen optimization routine, MMA.

C“\ no
Maxunum

iterations number
reached?

Considering multi-scale, packed bed adsorbers with complex, coupled physics updated using the method of moving asymptotes (MMA) to yield a

within the Topology Optimization Framework. new guess y<+!. oo
Defining representative nondimensional numbers that are appropriate for scaling « The design variable is updated using the method of moving asymptotes .

up- . S o (MMA) to yield a new guess y<*!. / processing. /
Uniqueness of solution and global optimization not ensured a priori.

Problem Statement

We wish to optimize one step in a post-combustion
Pressure Swing Adsorption (PSA) process Pl A feed g5y, =
containing N, and CO, is fed to the bed holding the 1>%¢0z ="

sorbent. M

The basis of this work is the formulation proposed by Olesen et al. [°l. The optimal design in [°]
involves a complex 7y distribution within the reactor. The algorithm optimizes the average
reaction rate (y) = —(k(y)c,)o by obtaining the optimal porosity field y(r), where —(k(y)c;)q 1S

the kinetic reaction term. In our case, instead of reaction we treat adsorption instead for the L.

First design obtained with Topology b) Preliminary design obtained with Topology °
optimization framework, k=1, ®(y) = —0.0036 optimization framework, k=80, ®(y) = —0.0046 5 80 1 1 degrees Of freedom

DAC packed bed contactor. The overall constrained topology optimization model 1s: )

Computational Framework

Max adsorption rate min ®(y) = —(k(y)c;),
Y

s.t. f('ly(x)dx —1Q] <0 Volume constraint
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0 <y(r) <1 Design variable

Conclusions

~N
 Catalytic-packed bed reactors can be optimized to share underlying scaling

properties. Therefore, this has the potential as a good starting point for packed bed
DAC devices.
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* The adsorption rate of the packed bed can be significantly increased by distributing
the active porous material within the device using topology optimization.

Surface: Control variable gamma Streamline: Velocity field =~ Surface: Control variable gamma Streamline: Velocity field
1f At

Surface: Control variable gamma Streamline: Velocity field
Ir r .

Our model J

* PSA processes could be a good starting point towards DAC design. )

* Temperature Swing Adsorption (TSA) should be explored as well to determine the
device potential.

LSS . TSA process technology should be explored. J

* TSA/PSA with packed bed physics within the TopOpt framework.
* Determine and evaluate dimensionless numbers that characterize the system

Preliminary Results

viodael
Surface: Velocity magnitude (mis) 10 N Surface: Velocity magnitude (m/s| 1 1 A D £J j_

e 3207 sec
e 231 iterations

* 3950 finite elements
* Triangular mesh
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| Eg i | - % We obtained an optimal design

[ Method Visualization/Analysi J ‘ .| I .
——CC . oo SHALAONANGYSS o — ) g , ) for the process. The optimal value
o(u-Vu=-Vp+nV2u—a()u eQ N-S oo el COMSOL Script COMSOL Script l
gL COMSOL/MATLAB .

Surace: Concentration (ol . . e o for the adsorption rate 1s 0.0065.
‘E - I! i i «:  +» The acquired design increases
) F 4 6 N B 10 E N & / 0 2 4 1.\.. ] 'II'J '.;»' the adsorption rate by 81%
" e e compared to the original design.
ifj | e iz: * This value was achieved through
. : | | - | = = the optimal material distribution
¢) Preliminary design obtained with d) Optimal design obtained with Topology
Topology optimization framework. k=180, optimization framework, k=231, y= 0.6591. AP=0.24 tha‘[ enhances the Contact between
®(y) = —0.0050 Pa.Da =0.0001 m2, ®(y) = —0.0065 22 )
the porous material and the gas
stream.
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