

Modeling and Structural Optimization of Adsorption-Based Systems for the Removal of Carbon Dioxide from the Air*

Mayra G Gonzalez-Ramirez^a, Tiras Y. Lin^b, Thomas Roy^b, Thomas Moore^b, Du Thai Nguyen^b, Pratanu Roy^b, Sarah Baker^b, Lorenz Biegler^a, Grigorios Panagakos^{a,c}

^aDepartment of Chemical Engineering, Carnegie Mellon University, ^bLawrence Livermore National Laboratory, ^cNational Energy Technology Laboratory.

design for a given material.

certain objective function (e.g. adsorption rate).

- Unique application of topology optimization.
- Considering multi-scale, packed bed adsorbers with complex, coupled physics within the Topology Optimization Framework.
- Defining representative nondimensional numbers that are appropriate for scaling up.

• Uniqueness of solution and global optimization not ensured a priori.

Problem Statement

sorbent.

The basis of this work is the formulation proposed by Olesen et al. ^[6]. The optimal design in ^[6]

Max adsorption rate $\min_{\gamma} \Phi(\gamma) = -(k(\gamma)c_i)_{\gamma}$			
s.t. $\int_{\Omega}^{\cdot} \gamma(x) dx = s $	$ \Omega \leq 0$	Volume constraint	Study Ar 1 - Study
$\rho(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = -\nabla p + \eta\nabla^2\boldsymbol{u} - \alpha(\gamma)\boldsymbol{u} \ \epsilon \ \Omega$		N-S	Graphics
$ abla \cdot oldsymbol{u} = 0$	$\epsilon \ \Omega$	Continuity	5.5 5 4.5 4 3.5

Preliminary Results

