NuDACCS – Nuclear Direct Air Capture with Carbon Storage DE-FE0032160

Brandon Webster Battelle Memorial Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Management Research Project Review Meeting August 28 – September 1st, 2023

Agenda

Overview

- Technical Approach
- Technology Background
- Progress and current status
- Status of Environmental Justice and Workforce Revitalization
- Lessons learned

Project Overview

Period of Performance: Currently month 11 of 18 months

Project Funding:

Federal Share: \$2,499,178 Non-Federal Share: \$864,446 Total: \$3,363,624 Project Team Members:

Sargent & Lundy

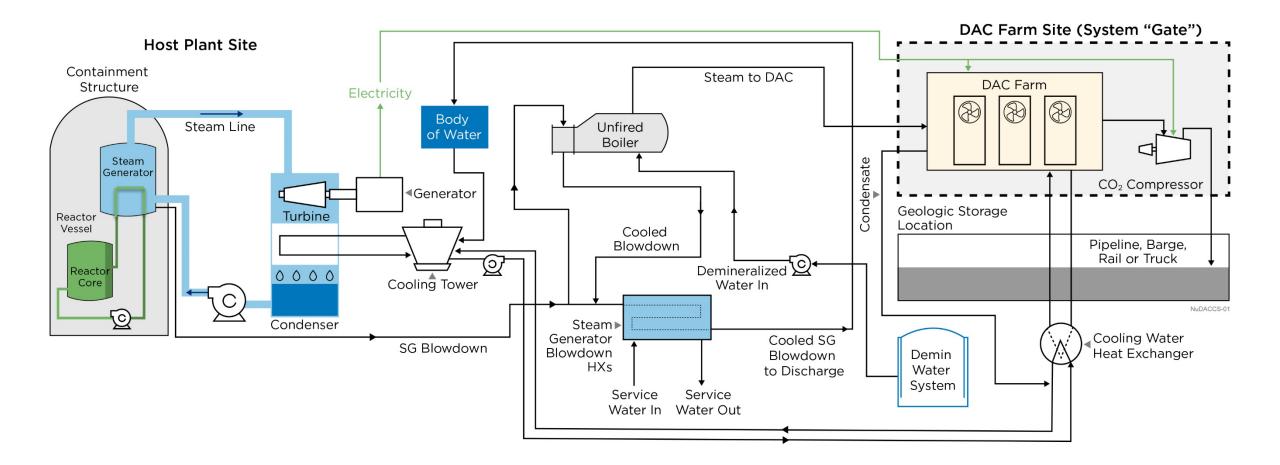
Project Goal:

The project will define system costs, performance, socio-economic impacts, and business-case options for leveraging available thermal energy from the nuclear plant to separate CO_2 from ambient air for off-site geologic storage.

Project

Purpose: Conduct a Front-End Engineering and Design (FEED) and associated supplemental studies to determine the technical, economic, and socio-economic viability of utilizing nuclear heat/power source for deploying a direct air capture (DAC) installation capturing 5,000 net tpa

Task List

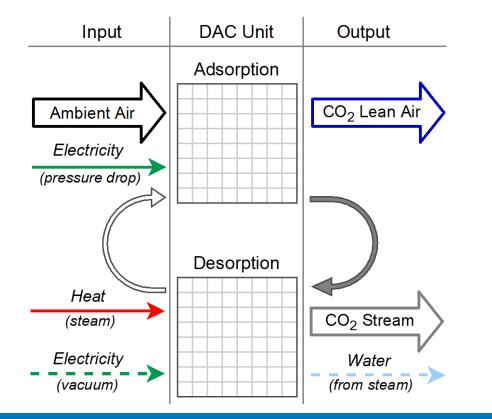

- Task 1.0 PM
- Task 2.0 FEED
 - DAC
 - Balance of Plant (BOP)
- Task 3.0 Project Economics and Business Case
- Task 4.0 Lifecycle Analysis and EH&S
- Task 5.0 Socio-Economic Impact
 - Environmental Justice
 - Economic Revitalization and Jobs Outcomes Analysis
 - Workforce readiness

Deliverables

Task/ subtask	Deliverable Title	Planned completion (month after award)	Verification method	Delivered?
1.6	Project Kickoff Meeting	3	Meeting Notes	Y
1.1	Updated PMPlan Complete	1	PMP submitted to DOE	Y
1.4	Updated DMPlan Complete	1	DMP submitted to DOE	Y
2.2.1	Process Design and Initial HAZOP Complete	9	Memo to DOE	Y
2.2	FEED Study Complete	17	Memo to DOE	
3.2	Cost Estimate BCA Complete	17	Memo to DOE	
4.1, 4.2	LCA and EH&S Risk Complete	17	Memo to DOE	
1.3	Workforce Readiness Plan Report Complete	12 initial, 17 final	Memo to DOE	
5.1, 5.2	Environmental Justice and Economic Revitalization Analyses	10 mid- project, 17 final	Briefing to DOE and project Stakeholders	Mid-Project = Y
1.7	Final Report	18	Memo to DOE and project Stakeholders	
1.2	TMP Complete	3 initial, 17 final	Memo to DOE	Initial= Y,

Overall Concept

Project Location



Technology Background

Step 1 (Capture): CO_2 is collected by moving air or mixtures of air and CO_2 rich gases across a proprietary contactor which adsorbs CO_2 .

Step 2 (Regeneration): The contactor is moved into a regeneration box where low-temperature steam flows across the contactor, removing CO_2 from the contactor, and the CO_2 is collected.

Goal: Use commercially available contactors and sorbents in an efficient system design to decrease the cost of DAC.

Polymeric Amine Sorbent

Monolithic Contactor

- Low pressure drop
- Low thermal mass
- High geometric surface area

Compatible with various construction methods

Adsorption

• 900 seconds / monolith in ambient air

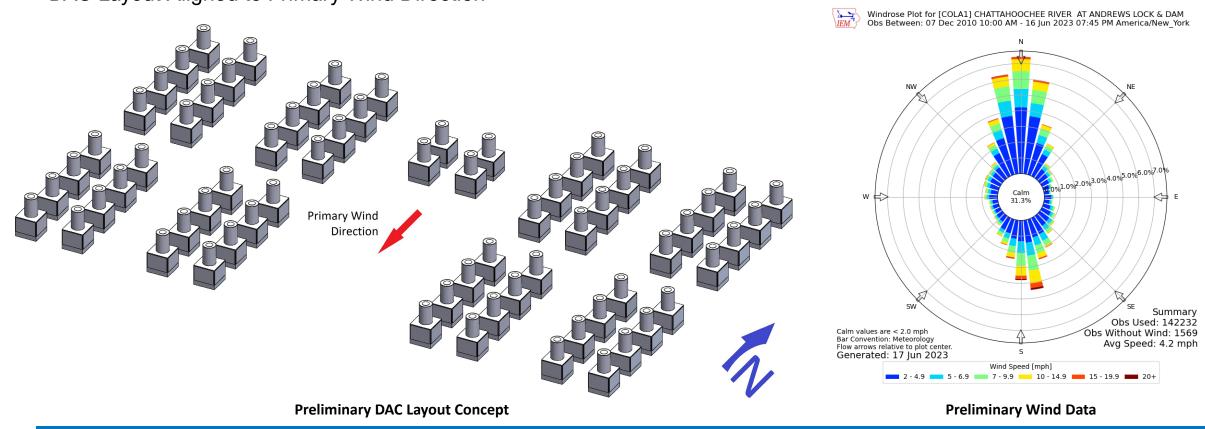
Desorption

Saturated Steam in less than 90 seconds

Monoliths & sorbents provided by Global Thermostat

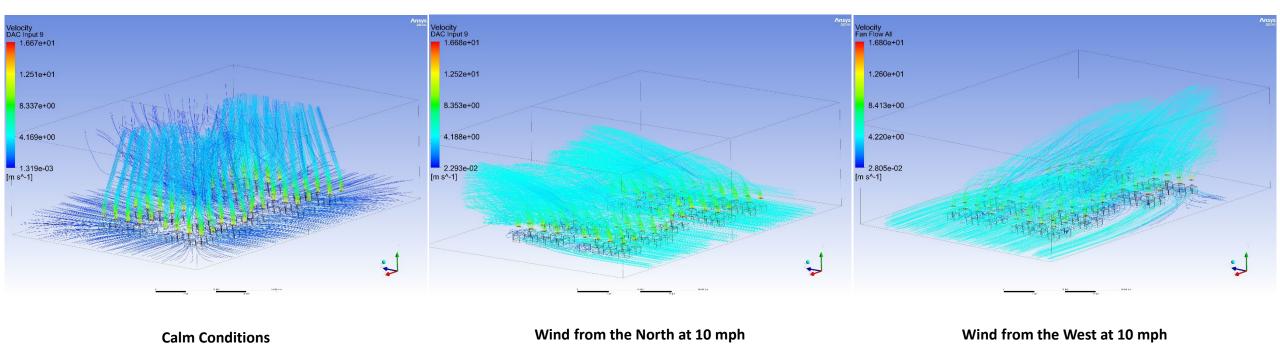
Aircapture Scale-Up/Testing

SN1: NCCC, Wilsonville, AL: March 2023 to present


SN2: Berkely, CA

Aircapture Concept DAC Layout CFD – Initial Conditions

- Objective: Preliminary Confirmation of Site Viability
- Preliminary Wind Data
- Noted Consistent Wind Pattern
- DAC Layout Aligned to Primary Wind Direction



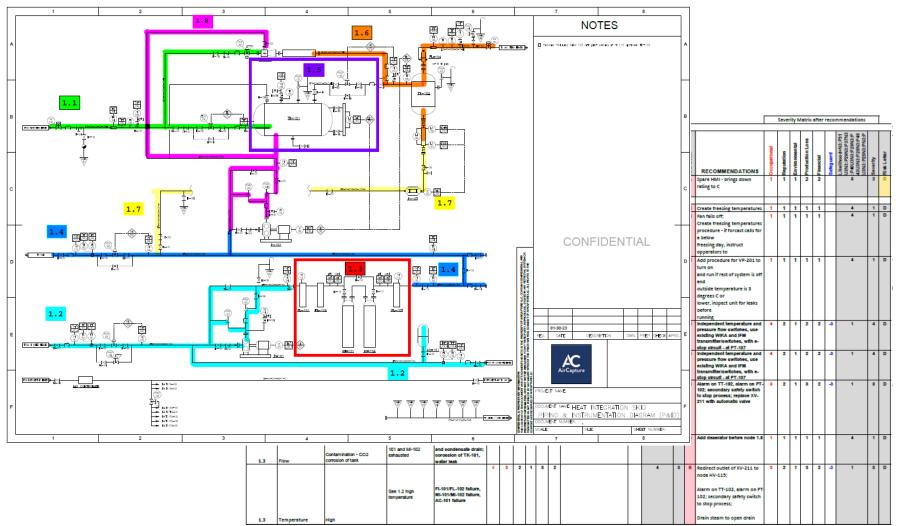
Aircapture Concept DAC Layout CFD – Results

- Primary and Secondary Wind Directions (from the North and West)
- Multiple Wind Speeds
- Minimal Recirculation
 - Primary Wind Direction < 1.5 %
 - Secondary Wind Direction <3%

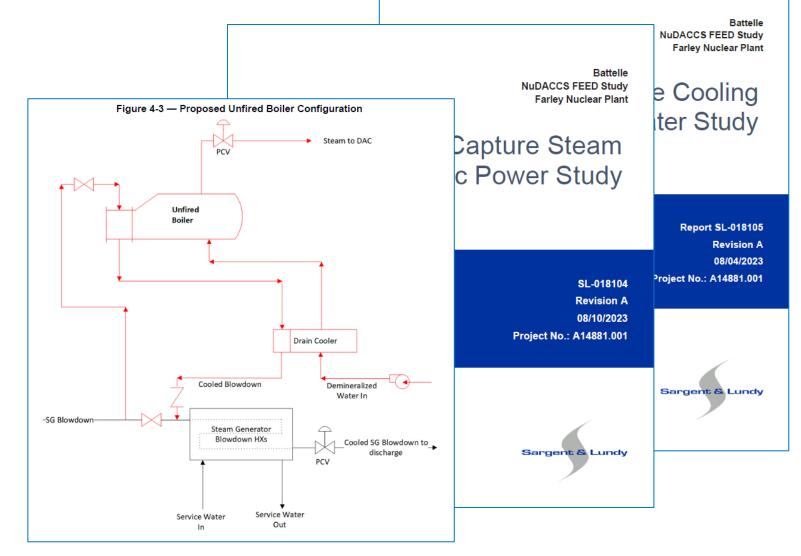
BATTELLE

Key Decisions

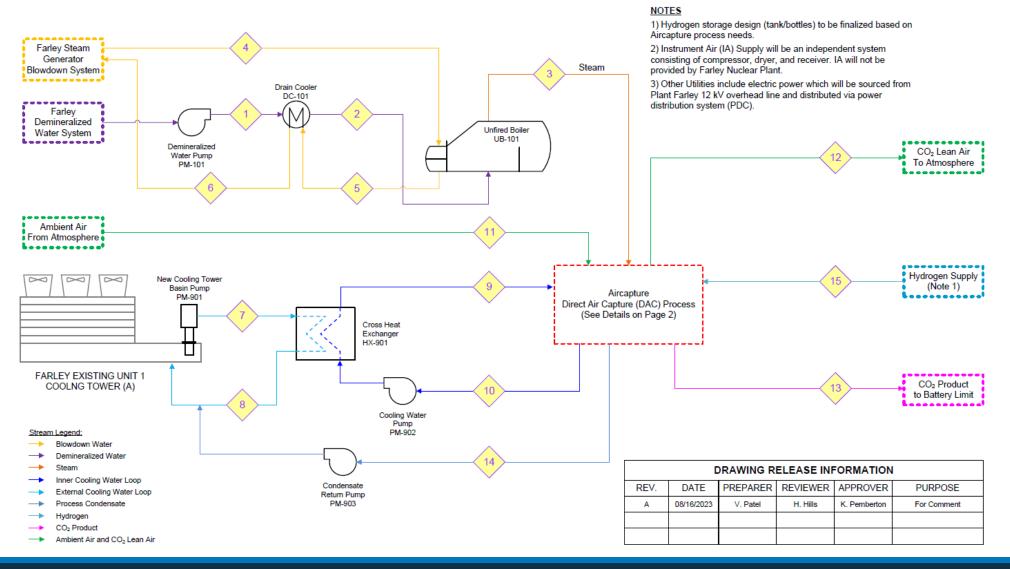
- Key decisions documented to align and document team decisions
 - Transport method
 - Steam generation method
 - Unit tie-in


Nuclear Direct Air Capture with Carbon Storage (NuDACCS) DE-FE0032160 Key decision memorandum documenting a pipeline as the offtake method RATTELLE 32160 Topic: What type of carbon dioxide offtake should the team design for: 1) Rail/Barge and 2) Pipeline ource. e (South) 2) Unit Two Background: E0032160 This decision of which type of offtake has impacts on various other engineering aspects of the project including what type of equipment AC needs to design into the DAC island. Additionally, the product specifications are different given the two offtake methods. Initial designs for both options were as the source of steam. s domains of the project undertaken by AC to understand the impact of the offtake method on process design aspects. v. the product e to provide steam to the DAC unit: for the three options ey demineralized water lopment and operation Decision: After consultation with Carbonvert, a carbon-plex project developer, who is also a participant and costshare provider on this project it was determined that option 2) a pipeline to a potential carbonplex ns of the project including operating lev Nuclear Plant to the location in the area would be the best approach. The specification below will be used for the CO2 he product specifications are This decision was made offtake specification for the project. ions were undertaken to understand luating the available Transport Method Value Notes Phase Required Transport and injection requirement Supercritical from the Farley Nuclear Plant to Max design parallel Pressure (Bar) >74 bar <150 bar, ANSI 900 lown. II be a heat transfer from the Farley r (1400 blowdowns, 7000 Upper limit - Protect external pipeline coating Temperature (C) <120°F er and boiler to minimize operating m/hr, (3150 kg/hr) CO2 Purity (Mass%) >= 90% Lower limit - PHMSA and 45Q gualification ith the black arrow proceeding to 4630 10270 upper limit - Catalyst for internal corrosion 4400 9760 O2 (Mass%) 100ppm mechanisms - ultimate limit may be determined by 580 1280 pipeline carrier 1450 3210 N2 (Mass%) <4% Upper limit - To Maintain dense phase 2.5 2.5 H2O (Mass%) No free water & < 30lbs/MMCF Upper limit - corrosion 120 Glycol .3gal/MMCF Damages pump seals 310 790 370 930 Reasoning: 870 2330 According to Carbonvert when developing a project, most individual sources do not have the capacity 840 1870 to economically justify the cost associated with characterization, well construction, MMV, and other related costs to store the CO₂ on-site in subsurface reservoirs. Because of these restrictions the two 6.5 6.5 offtake methods were evaluated for this specific project, as well as for a general approach to other waste heat utilization projects for DAC integration. While rail and barge transport to a sequestration site may be a simpler option for this scenario, a more long-term vision would be appropriate for this study to esult in reduced heat loss and OE) requirement of a ptection for the DAC Island. By using cided to move forward contamination decreases and le within the constraints mergency at the Farley facility, the le time, and the r be buriered in radiation is present in the primary water cooling system. This decision is a parallel design case. As more conservative approach and follows the safety and regulatory guidelines at Plant Farley. p opportunity, and preliminary cost and equipment numbers will be evaluated. The final report will also summarize these efforts and opportunities to expand the available captured CO2. Battelle, Sargent and Lundy, and AirCapture are all in agreement for this path forward as of 6/21/2023.

RATTELLE


Preliminary HAZOP

- HAZOP completed for Aircapture DAC island
- To be updated later in FEED


Balance of Plant (BOP)

- Studies complete identifying the key energy and cooling required form Farley to operate the DAC island
- Most BOP equipment has been sized as part of the two completed studies
- Additional BOP design work continues

BOP/Plant Farley Interfaces

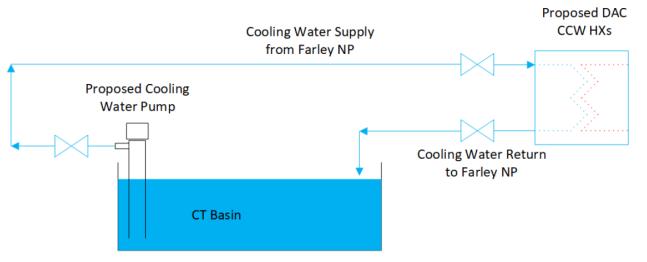
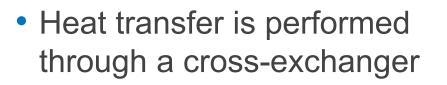
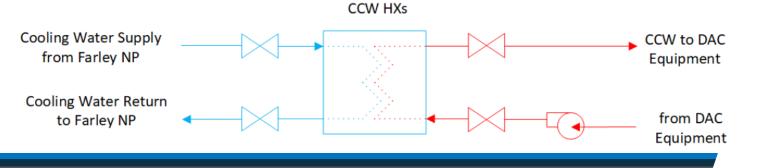
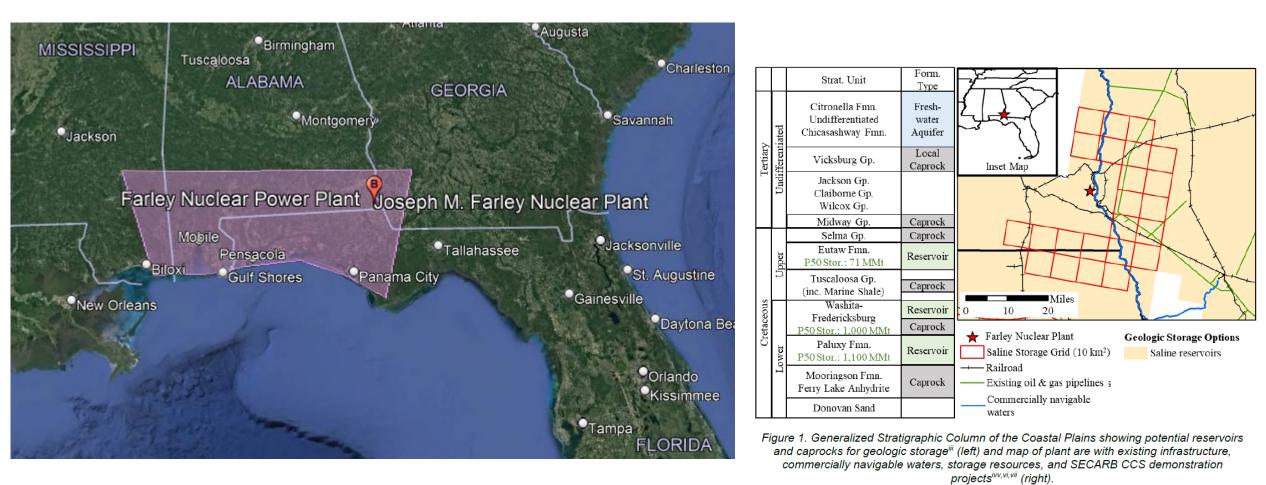




Figure 4-3 — Proposed CT Basin Option

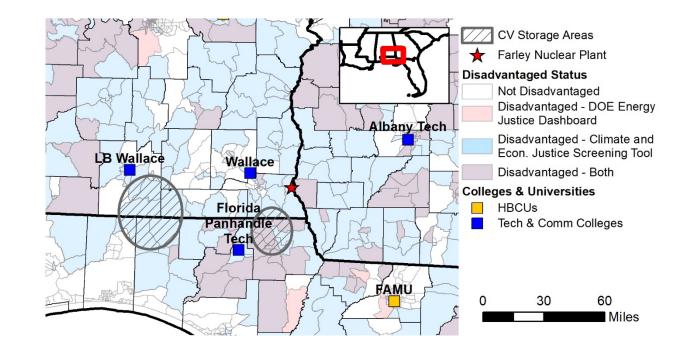
 Cooling water to be taken from Farley supply



Proposed DAC

Figure 4-1 — Cooling System Configuration at DAC

Potential Carbon Hub Locations



Environmental Justice Status

Disadvantaged communities have been identified using DOE and White House Council on Environmental Quality tools.

Minority Serving Institutions (MSIs) and technical and community colleges can help train workers.

Path Forward

- Update demographics
- Use tools to determine the issues affecting disadvantaged communities using these tools.
- Refine initial stakeholder map created for area (see table) and develop initial outreach ideas
- Determine workforce required
- Strategies for DEIA
- Link to DOE priorities for J40

Type of Org.	Stakeholder Organization	Interest	Reach		
	Southeast Alabama Community Fdn.	Project funds support education, health, human services, cultural arts, recreation, historic preservation, etc.	Local		
Community and Resident Orgs.	Southern Alabama Regional Council on Aging	Senior community organization in southeastern Alabama	Local		
	Dothan Housing Authority	Provides resources for local income housing / HUD grants	Local		
	Dothan Education Foundation	Provides resources to area educators	Local		
	Historic Chattahoochee Commission	Multi-state tourism and preservation agency	Regional		
	Wallace Community College	Community college in Dothan, AL	Local		
Workforce	Lurleen B Wallace Community College				
Development &	Albany Tech (Georgia)	2-year technical college in Albany, GA	Local		
Academia	Florida Panhandle Technical College	2-year technical college in Chipley, FL	Local		
	Geneva Regional Career Tech Center	Vocational High School in Geneva, AL			
Trade	Alabama Department of Commerce	Business development in Alabama	State		
Trade Associations /	Alabama Rural Electric Association	Local rural electric cooperative	State		
Econ. Dev.	Dothan Area Chamber of Commerce	Local chamber of commerce	Local		
Authorities	Southeast Alabama Economic Development Authority	Provides grants and loans to business / industry	Local		
Disadvantaged	Southeast Alabama Community Action Partnership	Local community organization	Local		
Comm. Orgs. and MSIs	Florida A&M University	An HBCU in Tallahassee, FL	Local/State		
IVIOIS	Tuskegee University	An HBCU in Tuskegee, AL	Local/State		
	Dothan, AL mayor's office & city commission	Local government in nearby populated area	Local		
Government	Dothan, AL dept. of planning & development	Local economic development	Local		
	Houston County, AL Commission	County-level decisions	Local		

Business Case Analysis/Lifecycle Analysis

• LCA

- LCA model is set up in openLCA
- Inputs are being sourced from FEED work

• BCA

- This work is kicking off in September 2023
- Will look at the business case of this installation and inform inflection points of this and other future installations
- Will define key inflection points

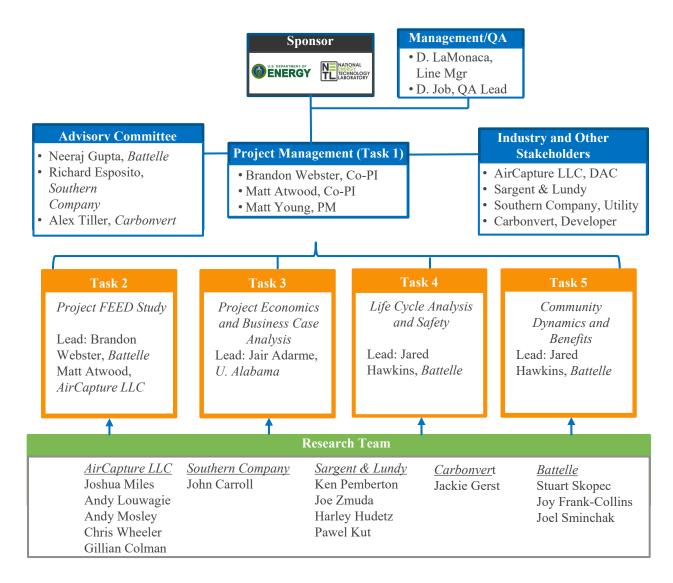
Initial Key Findings

- Optimization of available resources are key (heat source, available land, cooling, etc) to enabling the largest possible DAC capacity
- Importance of developing infrastructure/equipment outside of restricted site areas to minimize impact to Farley operations, and reduce project schedule risk
- Tying into an operating nuclear power plant will be complicated but provide access to low carbon power, heat, and cooling water
- These types of smaller installations could be enabled by investments in common transport and injection infrastructure
- Smaller installations may require shipping by barge, rail, or truck unless they can tap into pipeline transport network

Thank You!

- DOE NETL Project Manager Zachary Roberts
- Aircapture
- Sargent and Lundy
- Southern Company
- University of Alabama
- Carbonvert

800.201.2011 | solutions@battelle.org | www.battelle.org



Project Gantt Chart

	month no			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
WBS	(DOEM = DOE Milestone)	Lead	Key Support	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24
1.0	Project Management	Battelle																				
1.1	PM Plan Update (DOEM 2)	Battelle																				
1.2	Tech Maturation Plan Delivery (Initial/Final)	AirCapture	Battelle																			
1.3	Workforce Readi Plan Deliv (DOEM 8: Init, Final)	Battelle	AirCapture																			
1.4	Data Management Plan Update (DOEM 3)	Battelle	AirCapture																			
1.5	Project Status Reports	Battelle	AirCapture																			
1.6	Project Status Mtgs (DOEM 1 = Kick Off)	Battelle	AirCapture																			
1.7	Final Report (DOEM 9)	Battelle	AirCapture																			
2.0	Engineering Design Package (DOEM 5)																					
2.1	Project Scope and Design Basis	Battelle	AirCapture, Southern, S&L																			
2.2	FEED Study	AirCapture	S&L (BOP)																			
2.2.1	Process Design and Hazop Report	AirCapture	S&L (BOP)										-			•						
2.2.2	Equipment Design	AirCapture	S&L (BOP)													>						
2.2.3	Studies and Investigations (DOEM 4)	AirCapture	S&L (BOP)													-						
2.2.4	Mec, Civ, Struct, Elec, I &C, Arch	AirCapture	S&L (BOP)																		-	
3.0	Project Economics and Business Case	UA	S&L																			
3.1	Project Cost Estimate (DOEM 6)	UA	AirCapture, S&L																			
3.2	Bus. Case Analysis	UA	AirCapture																			
4.0	Life Cycle Analysis and Safety	Battelle																				
4.1	Life Cycle Analysis (LCA) (DOEM 7)	Battelle	AirCapture																			
4.2	EH&S Risk Assessment	Battelle	AirCapture																			
5.0	Socio-Economic Impact	Battelle	Southern																			
5.1	Envi Justice Analysis (DOEM 9)	Battelle	UA																			
5.2	Econ Revital and Jobs Analysis (DOEM 9)	Battelle	UA																			

Org Chart

