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Project Overview

– Funding

• Govt. Share:  $2,808,243.00

• Cost Share:  $702,100.00

• Total:  $3,510,343.00 

– Overall Project Performance Dates

• Conditional Project Award:  10/01/2021

• Final Award:  11/29/2021

• Project Kickoff Meeting:  12/13/2021

• Final Report:  December 31, 2024
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Project Overview

– Project Participants

• Lead Organization:  Black & Veatch Corporation

• Partner Organizations: Global Thermostat, Sargent & 

Lundy, ExxonMobil

• Host sites:  Southern Company, Elysian Ventures
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Project Overview

– Overall Project Objectives:  Completion of an 

initial design of a commercial-scale, Carbon 

Capture, Utilization, and Storage Direct Air 

Capture (CCUS-DAC) system that captures a net 

of at least 100,000 tonne per year (TPY) carbon 

dioxide (CO2) from the atmosphere and sequesters 

through pipeline transportation to different 

geological storage sites.
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Global Thermostat DAC Platform
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Scalable Modules for All Markets
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GT Accelerated Development & Pilot Campus

Advanced R&D and integrated pilot campus at GT HQ near 
Denver, Colorado enables at-scale operation and rapid 
development cycles. 

• 2+ Acre Facility

• State-of-the Art Analytical & Materials Labs

• Bench, Pilot & Commercial Scale Testing Facilities

• Fabrication & Prototyping Shop



8

Kilotonne-scale GT DAC Demonstration

Operating since Q4 2022

• For 100+kta deployments, increase size of DAC module (scale up), 

duplicate DAC module (scale out), and centralized shared components



9

Project Scope & Approach

• Identify three DAC plant locations of different climates, nearby to active 

sequestration.

• Complete FEED study and cost estimate for standalone DAC installation, including 

utilities and compression, capable of >100,000 tonnes/year net CO2 removal at the 

lead location.

• Due to lack of reliable renewables at the sites, assume natural gas as the 

baseline energy source -- design CHP with packaged PCC amine system

• DAC plant: GT, S&L

• BOP/utilities: B&V

• Modify the lead location plant design for the subsequent two locations to adapt to 

the site specifics (climate, civil, etc.).

• TEA, LCA, EH&S assessment, business case assessment for each



Project Sites

Site 1: Bucks, AL

Hot / Humid Climate

Site 2: Odessa, TX

Hot / Dry Climate

Site 3: Goose Creek, IL

Mid-Continental Climate 10

Factors Affecting DAC Deployments at the 

Three Sites

• Differentials in productivity and energy demand due to climate 

(temperature and humidity) – rely on GT pilot-scale database

• Differentials in winterization requirements due to climate – use 

predictions based on GT experience in Colorado

• Differentials due to air quality – use predictions based on 

Colorado database

• Differences in energy costs (natural gas) and fixed costs (labor, 

maintenance, tax, and insurance) – input from host site 

partners

• All offer close by opportunities for sequestration



11

Project Site 1 – Bucks, AL

• Baseline Site: JM Barry Power Plant

Climate considerations: 

Hot, Humid

Lower delta T for regeneration

Higher thermal mass due to water content

Favorable kinetics for adsorption

Slower monolith dehumidification during transition

No winterization/subfreezing operation considerations
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Conceptual Block Flow
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Scale-Up Approach

• Build off of kilotonne-scale DAC plant

– Retain concepts for movement system, regen box, seals, intake manifold, 

contactor cartridging, etc.

– Retain 9:1 ratio of adsorption to desorption

– Apply the same process steps

• Ring-shaped DAC module consisting of ten independent 

segments (wedges) and circular track

– Each adsorption wedge compartmentalized but identical

• Develop size comparison matrices to evaluate capital & 

operating cost trends vs. segment size

• Down-select size based on efficiency, constructability, cost, 

commercial equipment availability

• Confirm and iterate viability of segment geometry for airflow 

uniformity and system pressure drop via CFD
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Sizing Matrix Example

● Evaluate 14’ vs 20’ vs 32’ CT fans correlated to two 

different contactor amounts:

○ “Equal Area” – Contactor frontal area sized to equal fan sweep area

○ “Maximum Airflow” – Contactor frontal area sized to accommodate airflow 

capability at the specified static pressure

● Selected 15’ diameter fan with a monolith area to fan open area ratio of 2:1

● While the fan power and electrical system costs scaled favorably as the fan diameter 

increased, the structural design aspects scaled poorly

● Smaller DAC segments and regeneration boxes result in better constructability and 

maximizes shop fabrication
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DAC Module Design
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“4-Pack” Repeat Unit

● DAC Module Diameter is 120’

● DAC Modules create 4-Pack Clusters

● Common 4-Pack Process Area

● Plant aggregate capacity scales by 
increasing the number of 4-Packs

● Centralized plant utilities

● Centralized plant CO2 compression
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Process Area

● Per DAC Module:
○ Product Separator

○ Product Condenser

○ Steam Capacitance Vessel

○ Air Evacuation/Harvest Vacuum Pumps

● Per 4-Pack:
○ Product Coolers and Blower

○ Condensate Collection

○ 2x PDCs: switchgear, MCCs, VFDs, UPS, DCS
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DAC Modules
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Full DAC Plant
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Plant Utilities

• CHP
• Single CTG/HRSG configuration

• No STG to maintain flexibility and reduce complexity

• Single pressure HRSG

• SCR and CO catalyst for NOₓ and CO reduction, respectively

• Supplemental duct firing to increase steam production and control

• High efficiency, even at part load

• High power (~115 MW) results in plenty of output margin

• Low minimum CTG load of 20% while maintaining emissions 

compliance minimizes grid draw and startup durations

• Post combustion carbon capture (PCCC) based on amine technology 

included to capture 95% of CO₂ emissions produced by the CHP.

• Auxiliary boiler
• Will only be used for startup warming of the PCCC system and will not 

be utilized during steady state operation. 
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Plant Utilities PFD
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Plant Utilities Rendering
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Bucks AL Conceptual Location



24

• General size of the CHP facility and DAC 
power requirements have changed significantly since the 
initiation of the project. The auxiliary power for CO₂ 
compression was not initially included.

• Startup requirements and sequence for the CHP, PCCC, 
and DAC systems were developed.

• Startup and shutdown events were sequenced to minimize 
natural gas combusted, electricity drawn from the grid, and 
CHP run time without the PCCC operating.

• Bigger is not always better – non-linear civil & 
structural costs create an optimization between DAC module 
scale and construction cost

• Cascading DAC modularity creates implicit redundancy

Lessons Learned
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Plans for future testing/development/

commercialization

a. Current project

• Large scale DAC module designed to FEL2 level with 

Class 4 estimate

• DAC plant designed for >100 kta net capture from the 

atmosphere – complete TEA and LCA

b. Next phase – after this project complete

• Finalize the building block design for a climate-relevant 

plant; take to FEL3 design / Class 2 estimate

• Construct the large-scale DAC module 
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Summary Slide

• DAC module designed for balance of scale and 

constructability

• Cascading modularity in overall DAC plant design:
› Centralized utilities, servicing

    › Distributed process areas, each servicing

        › Four-packs of DAC modules, each comprised of

            › Nine identical adsorption wedges, each containing

                › Three contactor panels, each populated with

                     › Hundreds of active contactor bricks

• Modifications to primary Bucks AL plant design, cost, 

productivity in progress

• Odessa TX - Hot & Dry: Lower energy requirement

• Goose Creek IL - Cold & Wet: Winterization



Thank You
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Appendix

– These slides will not be discussed during the presentation but 

are mandatory.
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Organization Chart
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Project Team

• Black & Veatch

– Mark Steutermann – Project Manager

– Algert Prifti – Technology Manager

– Dave Oldham – BOP Engineering Manager

• Global Thermostat

– Dr. Eric Ping – VP, Process & Operations

– Dr. Steph Didas – Director, Special Projects

– Dr. Miles Sakwa-Novak – VP, Materials

– Brianna Atherton, P.E. – VP, Plant Design & Manufacturing

– Jed Pruett – Director, Process Development

– Zachary Foltz – Development Engineer



31

Project Team (cont.)

• Sargent & Lundy

– Kevin Lauzze – VP and Project Director

– Nick Kutella – Project Manager

– Cheryl Goodenough – Engineering Manager

– Bill Sheeren – Process & Mechanical Engineer

• ExxonMobil Technology & Engineering (EMTEC)

– Rustom Billimoria – Distinguished Scientific Advisor

– Justin Federici – Project Manager

• Southern Company

– John Carroll – Project Engineer

• Elysian

– Bret Logue – Principal Elysian Ventures, LLC
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Gantt Chart
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