Integrated Bench-Scale Testing of a Structured Sorbent for Direct Air Capture

DE-FE0032243

Andrew Tong, Raghubir Gupta, Arnold Toppo Susteon, Inc.

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

Project Overview

Total Funding: \$3,750,000

DOE Funding: \$3,000,000

Cost Share: \$750,000

Overall Project Performance Dates:

BP1: 07/01/2023 - 12/31/2024 BP2: 1/01/2025 - 6/30/2026

DOE Project Manager: Mr. Zachary Roberts

Project Team

Project Objectives

Overall Objective:

Lower the overall cost of DAC through the development of a structured material assembly (SMA) and integrated DAC system design which will be regenerated with low-carbon electricity (TRL 4 to TRL 5).

Technical Objectives

- Design, build, and test an integrated bench-scale DAC system for continuous CO₂ production at 1 ton/yr (TPY)
- Complete >1000 adsorption-desorption cycles to confirm sustained performance of SMA and integrated DAC system design
- Process real, unconditioned air under multiple climate conditions to assess structured material assembly (SMA) and overall system performance
- Perform a high-fidelity TEA and LCA to develop a technology commercialization plan

Structured Material Assembly (SMA) Concept

- Adsorption with a sorbent is different with 400 ppmv CO₂ in air compared to high concentrations of CO₂ in point sources.
- Humidity in air plays a critical role in CO₂ capture from air.
- Our SMA integrates the sorbent, regeneration method, and substrate into an optimized form, which;
 - Increases productivity by enabling fast CO₂ adsorption rate and rapid regeneration
 - Lowers the energy utilization by reducing pressure drop during adsorption and energy losses during desorption
 - Powered by low-carbon electricity for maximum net removal efficiency (no steam needed)

Bare Substrate

Fully Integrated SMA

Project Success & Milestones

Project Success Criteria

- CO_2 working capacity is >3 wt% (g- CO_2 /g-sorbent)
- Confirm <1.25% degradation in CO₂ working capacity over 1,000 adsorption/desorption cycles
- Achieve sustained >80% purity CO₂ production
- Verify startup, shutdown, and trip performance of prototype system

Technology Background & Accomplishments

6

Bench-Scale Unit: Design

- Designed for 1-2 kg/day of CO₂ from ambient air
- Highly instrumented to obtain high-fidelity mass/energy balances
- All major process components representative of a scaled-up system included
- Full-scale four monolith bricks (150 mm cubes) can be tested
- System fully commissioned in Spring 22

Bench Unit Test Results

Integrated SMA stable after >300 cycles of operation

Process Model Development

Technical Approach

- **Design, build and demonstrate** in an integrated DAC bench-scale prototype system by processing air from a real, outdoor environment and capturing 3 kg/day CO₂ (1 TPY)
- **Prepare and synthesize** sufficient SMAs coated with promoted sorbent and heating layer to complete integrated DAC prototype system operation (>20 structured sorbents) with consistent heating and capture performance
- **Develop a robust gas seal design and purge operation** capable of >1,000 cycle operation without loss in SMA or system performance
- **Design an efficient process cycle** for adsorption, heating, desorption, to maximize sorbent productivity and minimize the overall capex and opex for the technology. Cycle design to be validated in the integrated DAC bench-scale prototype system operation.

Project Tasks

Task 1: Project Management

Task 2: Detailed Design and Fabrication of Prototype System

- Completed design of 1TPY integrated DAC system for fabrication
- DAC enclosure design, P&IDs, process control design, safety review

Task 3: Structured Sorbent Synthesis for Bench Unit

• Prepare and verify performance of SMAs for integrate system testing

Task 4: Construction, Installation and Commissioning

• Build integrated test system

Task 5: Parametric and Long-Term Testing

- Assess system performance under varied operating conditions and weather conditions
- Complete >1,000 adsorption and desorption cycles

Task 6: Techno-Economic Analysis & Life-Cycle Assessment

• Update existing DAC process model and assessments with integrated bench system results

Task 7: Technology Environmental Health and Safety (EH&S) Risk Assessment

Task 8: Technology Gap Analysis (TGA)

Preliminary Design

Detailed integrated bench system design in progress

Summary

- SMA developed with sustained CO₂ adsorption and desorption capacity and reliable direct electric heating regeneration
- Project Objective: Advanced DAC technology readiness from TRL-4 to TRL-5
 - Design, build, and test an integrated bench-scale DAC system for continuous CO₂ production at 1 TPY
- System will test direct, unconditioned outdoor air for CO₂ capture and concentration up to 90%
- 1 TPY test unit currently in design

Appendix

Gantt Chart

														Montl	ıs fron	Proj	ect St	art Da	ate											
Project limeline									BP	1													BI	P2						
	Start Date	End Date	1	2 3	4	5	6 7	8	9	10 1	1 12	13	14 1	5 16	17	18 1	9 20	21	22	23 2	24 2	5 26	27	28 2	9 30) 31	32 3	3 34	35	36
Task 1.0 - Project Management and Planning																														
Subtask 1.1 Project Management Plan	1-Jul-23	30-Jun-26																												
Subtask 1.2 Technology Maturation Plan	1-Jul-23	31-Mar-26																												
Subtask 1.3 – State Point Data Table (SPDT)	1-Jan-26	31-Mar-26																												
Milestone 1.1: Initial TMP within 90 days of project start		30-Sep-23		+																										
Milestone 1.2: Final TMP within 90 days prior to project completion		31-Mar-26																									+			
Milestone 1.3: Final state point data table due 90 days prior to project completion		31-Mar-26																									+			
Task 2.0 – Detailed Design of Integrated DAC Prototype System																														
Subtask 2.1 – Develop Functional Design Specifications	1-Jul-23	31-Aug-23																											\square	
Subtask 2.2 - Complete Piping and Instrumentation Diagram (P&ID), Control Specifications	1-Aug-23	31-Oct-23																												
Subtask 2.3 – SMA Reactor Module Design	1-Sep-23	31-Dec-23																												
Subtask 2.4 – PHA, Instrument List, and Equipment and Fabricator Selection	1-Jan-24	31-Mar-24																												
Subtask 2.5 - Balance of Plant Design	1-Feb-24	31-Mar-24																												
Milestone 2: DAC prototype rig design complete and ready for fabrication		31-Mar-24							+																					
Task 3.0 – Structured Sorbent Synthesis for Bench Unit																														
Subtask 3.1 - Procurement of equipment and coating components	1-Sep-23	31-Mar-24																												
Subtask 3.2 - Monolith Substrate and Coating Material Procurement	1-Jan-24	31-Mar-24																												
Subtask 3.3 - SMA Synthesis and Characterization	1-Mar-24	30-Jun-24																												
Subtask 3.4 - Sorbent Synthesis for Integrated Bench Prototype Testing	1-Jul-24	31-Dec-24																												
Milestone 3: SMA synthesis equipment installed and protocol is verified.		30-Jun-24									+																			
Task 4. Integrated Bench Unit Construction, Installation and Commissioning																														
Subtask 4.1 - Completion of Vendor Design Drawings and Initiate Component/Equipment Procurement	1-Mar-24	30-Jun-24																												
Subtask 4.2 - Integrated Bench Unit Construction and Installation	1-Jul-24	30-Sep-24																												
Subtask 4.3 - Bench Unit Commissioning and PSSR	1-Sep-24	31-Dec-24																												
Milestone 4: DAC prototype rig setup and ready to operate		31-Dec-24														+														
Go/No-Go Decision Point 1 to Enter BP2	31-D	ec-24														۲														
Task 5. Parametric and Accelerated Long Term of Integrated Bench Prototype Test Rig																														
Subtask 5.1 - Parametric Testing with Integrated Prototype Test Rig	1-Jan-25	30-Jun-25																												
Subtask 5.2 - Accelerated Long Term of Integrated Bench Prototype Test Rig	1-Jul-25	30-Mar-26																												
Milestone 5.1: Projected adsorption and desorption rates achieved		30-Jun-25																			+									
Milestone 5.2: Sustained CO2 Loading, CO2 purity, and adsorption/desorption rate achieved over 1000		20 14																												
adsorption/desorption cycles		30-Mar-26																									+			
Task 6. Techno-Economic Analysis & Life-Cycle Assessment																														
Subtask 6.1 – Process Model Update	1-Apr-25	31-Dec-25																												
Subtask 6.2 – Techno-Economic Analysis	1-Apr-25	30-Jun-26																												
Subtask 6.3 – Life Cycle Analysis	1-Jul-25	31-Mar-26																												
Milestone 6.1: Initial TEA and LCA report due 120 after project start		31-Oct-23																												
Milestone 6.2: Final TEA and LCA report due 90 prior to project completion		31-Mar-26																												
Task 7. Technology Environmental Health and Safety (EH&S) Risk Assessment																														
Milestone 7: Final EH&S analysis due 90 prior to project completion		31-Mar-26																									+			
Task 8. Technology Gap Analysis (TGA)																														
Milestone 8: Final TGA within 90 days prior to project completion		31-Mar-26																									+			