Dual Function Materials for Direct Air Capture of CO₂ DE-SC0020795

Jonathan Peters and Raghubir Gupta Susteon, Inc.

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

Project Overview

Raghubir Gupta President

Sr. Process Engineer

JP Shen Senior Chemist

S. James Zhou

Vasudev Haribal Research Chemical Engineer

Jian Zheng Sr. Research Engineer

Robert Farrauto Professor

Monica Abdallah Ph.D. Candidate

Iris Lin Ph.D. Candidate

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

SBIR Phase II: DE-SC0020795

Funding: \$1,600,000 (DOE share)

Overall Project Performance Dates

BP1: 08/23/2021 - 08/22/2022

BP2: 08/23/2022 - 08/22/2023

DOE Project Manager: Zachary Roberts

MGK INSULATORS, LTD.

Industrial Partners

Reactive Direct Air Capture (DAC) of CO₂

Dual Functional Material (DFM) captures CO₂ and releases into CH₄ upon conversion

Overall reaction: $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ $\Delta H =$

 $\Delta H = -165 \text{ kJ/mol of CO}_2$

Technology Background

The overall objective of the project is to lower the cost of DAC through development of advanced dualfunctional materials (DFM) and production of renewable natural gas (RNG) to offset the cost of DAC. DAC-DFM technology generates RNG from atmospheric CO_2 .

Two Step Process Cycle

- **Step 1:** Adsorb CO₂ from air onto DFM at ambient conditions
- **Step 2:** Add renewable H₂ and heat to regenerate the sorbent to produce RNG

Overall Reaction: $CO_2 + 4H_2 = CH_4 + 2H_2O$

This is a **Power-to-Gas** technology using atmospheric CO₂.

Project Objectives of SBIR Phase II

Technical Objectives

- Optimize DFMs on the selected support structures to achieve maximum CO₂ adsorption capacity, low pressure drop and CO₂ conversion to methane
- Develop an efficient heating method to minimize energy requirement
- > Design and build a bench-scale unit (~ 300 g/day CO_2)
- Perform parametric and long-term testing to obtain engineering data needed for a pilot system design
- Develop a process model to accurately represent the DAC-DFM process
- Perform and refine the technoeconomic assessment (TEA) to evaluate the commercial potential of the DAC-DFM process

Summary of SBIR Phase I Results

Humid vs. Dry Conditions with Granules

1% Ru, 10% Na_2O/Al_2O_3 granules

>6wt% CO₂ capacity in humid conditions

1% Ru, 10% Na₂O/Al₂O₃//TiO₂ monolith

Demonstrated washcoated monolith performance

TOS Performance With Granules

1% Ru, 10% Na₂O/Al₂O₃ granules

Methanation initiates at 175°C, peak CH₄ production at 280°C

Advantages/Challenges

Advantages

- Sorbent materials are low-cost and widely available.
- DFM performance is stable over 450 hours under various climate conditions and is enhanced by humidity in air.
- Joule-heated monolith provides fast, efficient heating for CO₂ conversion into methane.

Challenges

- Requires low-cost carbon-free hydrogen
- Requires ruthenium catalyst for methanation
- Combining capture and conversion in one unit simplifies the flowsheet, however, it adds some complexity to the reactor design

Technical Approach

Optimize the composition of Ru + Na₂O/Na₂CO₃ on alumina support DFM

- 1) minimize amount of Ru in the DFM
- 2) maximize CO₂ capture capacity
- 3) maximize CO₂ capture kinetics
- 4) maintain high dynamic capture capacity between cycles
- 5) lowest temperature for light-off of the methanation reaction
- 6) minimum degradation over 1000s of adsorption/ methanation cycles

Support the DFM on a low-pressure drop structured support

such as monolith or laminates to minimize the energy consumption due to pressure drop.

- 1) target is <250 kWh/ton of CO₂ captured for low pressure-drop
- 2) supporting of DFM will require optimization of the coating process to coat a uniform layer of Na₂CO₃ and Ru/alumina.

Develop a design for heating of DFM layer

to initiate the methanation reaction by desorbing CO₂
to develop a design for a heating layer using Joule heating

Design an efficient process cycle

for adsorption, heating, desorption, methanation, and cooling to maximize capital productivity and minimize the overall capex and opex for the technology

Lab Scale DAC-DFM Testing

- Reactor oriented within a tube furnace with single-zone temperature control
- Gas manifold system allows for gas switching between cycle steps
- Measure parts-per-million concentrations of CO₂ and CH₄ at the reactor outlet using NDIR gas analyzers

Robust Performance Under Various Climate Conditions

Effect of Low Ru on DFM Performance

- Ru catalyzes CO₂ methanation
- Increasing Ru has a positive impact on conversion
- Ru helps to free CO₂ adsorption sites during methanation resulting in greater effective capacity

Takeaway:

An economic optimum is near 0.25%Ru for commercial applications.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Optimized Cycle Timing Improved CO₂ to CH₄ Conversion

Sample — 1%Ru, 10%Na₂O/Al₂O₃//mo (NGK, cordierite) 1.4 g/in³, 600 cpsi, 2 mil wall

Adsorption Times (min): 15, 50, 90, 270

By operating near 50% capacity

- Adsorption duration is reduced by 75% which results in higher CH₄ productivity in tonnes CH₄/day/m³ DFM reactor volume.
- Near complete conversion of CO₂ into methane

12

DAC-DFM Bench Scale Unit

- Feed gas manifold
 - Mass flow controllers
 - 0–90% RH control
 - Saturator
- Reactor
 - Isolation valves
 - Joule-heating with 30°C/min heating rate

- Gas Analysis
 - Mass flow meter
 - FTIR for methane
 - NDIR for CO₂ and RH

Carbon Coated Monoliths for Joule Heating

Joule Heating

- Carbon heating layer on monolith
- 400 CPSI, 7 mil wall thickness
- Heating cycles under N₂ with PID control
- Heating Temperature: 250°C
- N₂ flowrate: 100 sccm

Joule-Heated DFM Cycle Testing Results - Capacity

- 0.8 wt% Ru/ 38 wt% Na₂O/carbon//monolith
- Improved carbon heating layer (low resistance 40.8 ohms)
- 1 hr adsorption time
- 550 μmol CO₂/gDFM working capacity (1 hr)

>90% Conversion of CO₂ to CH₄

Step	Duration	Gas	Flowrate
Adsorption (35°C)	1 hr	400 ppm CO ₂ / humid air	40 L/h/g (1000 mL/min)
Purge (30°C)	10 min	N ₂	4 L/h/g (100 mL/min)
Methanation (300°C)	1 hr (30°C/min heat rate)	100% H ₂	4 L/h/g (100 mL/min)

>90% Conversion of CO_2 to CH_4

Joule-Heated DFM Cycle Testing Results - Capacity

- 0.5wt% Ru/ 30wt% Na₂O/alumina/carbon//monolith
- Improved carbon heating layer (higher resistance 228 ohms)
- 1 hr adsorption time
- ~650 μ mol CO₂/g_{DFM} working capacity (1 hr)
- 72-78% conversion of CO₂ to CH₄

Step	Duration	Gas	Flowrate
Adsorption (35°C)	1 hr	400 ppm CO ₂ / humid air	40 L/h/g (1000 mL/min)
Purge (30°C)	10 min	N ₂	4 L/h/g (100 mL/min)
Methanation (300°C) Cycles 1- 56	1 hr (30°C/min heat rate)	100% H ₂	4 L/h/g (100 mL/min)
Methanation (300°C) Cycles 57-92	1 hr (15°C/min heat rate)	100% H ₂	4 L/h/g (100 mL/min)

72-78% Conversion of CO₂ to CH₄

>300 Hours of continuous testing with joule heating

Process Design

Sensitivity Analysis on Key Parameters

\$200/tonne CO₂

Cycle Design Impact on Process Economics

Parameter	Units	Phase I	Phase II
Ru Content	wt%	1	0.25
Adsorption Time	hrs	4	1
Capacity	mmol/gDFM	1	0.6
CO ₂ Conv.	%	50	90
Product Gas Composition	mol%	$CH_4 - 50\%$ $CO_2 - 50\%$	$CH_4 - 90\%$ $CO_2 - 10\%$

Current lab results are now in-line with our TEA process assumptions

DAC-DFM Process Scale-Up

Summary and Key Findings

- Demonstrated a robust DFM washcoated monolith formulation with stable performance (>450 hours of testing) that is enhanced with humidity achieving up to 1.2 mmol CO₂/g_{DEM} capacity
- Lowered the Ru content in the DFM from 1 wt% to <0.25 wt%, thus reducing the Capex and Opex of the process and reduced the cost of RNG production.
- Learned that CO₂ preferentially adsorbs on strong sites on DFM in the beginning of adsorption step followed by weaker sites towards the end of adsorption step. This led to operating near 50% capacity via 75% shorter adsorption step resulting in >90% conversion of CO₂ into CH₄.
- Demonstrated continuous Joule-heated DFM cycle testing for over 300 hours with heating rates up to 30°C/min.
- ✓ Fully integrated monolith supported DFM and reactor scale-up by 600X from 0.5 to 300 g/day
- TEA and LCA demonstrate commercial viability while maintaining a net negative carbon emissions on a cradle-to-gate basis.

Acknowledgements

- Project Team
 - Susteon
 - Columbia University
- DOE/NETL
 - Zach Roberts
 - DE-SC0020795
- Industry Partners

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Gantt Chart

Project Timeline		S	0	N	D	J	F	M	Α	М	J	J	Α	Α	S	0	Ν	D	J	F	М	Α	М	J	J	А
		Buc	lget	Per	riod	1 (0)8/2	3/20)21-	-08/2	22/2	022))		Bud	lget	Per	riod	2 (0	08/2	3/20	22-	08/2	2/20	023)	
Tasks and Milestones		9	10	11	12	1	2	3	4	5	6	7	8	8	9	10	11	12	1	2	3	4	5	6	7	8
Task 1.0 - Project Management and Planning																										
Milestone 1: Kickoff meeting																							1			
Task 2.0- DFM washcoat optimization on structured support																										
Subtask 2.1 – Low-Pressure Drop Support Evaluation																										
Subtask 2.2 – DFM Formulation and Washcoat Optimization																							1			
Subtask 2.3 - Methanation Method Optimization																							1			
Subtask 2.4 – Structured Material Characterization and Testing																							I			
Subtask 2.5 – Structured DFM Parametric Testing																										
Subtask 2.6 – Structured DFM Long-Term Testing																										
Milestone 2: Completion of >100 hours of DFM testing																							1			
Task 3.0 - Process Model Development																							1			
Milestone 3: Process model validated using the DFM test data													\diamond										i			
Task 4.0 - Bench-Scale Test System Design and Equipment Selection																							—			
Sublask 4.1 – Belich-Scale System Design																							—			
Sublask 4.2 – Bench-Scale System Equipment Sizing and Procurement																				<u> </u>				<u> </u>		
equipment and procurement													\diamond										1			
Rudget Beried 2 Teeke																										
Task 5.0 Danah Casta Suntan Estrication and Tasting										-														ł		
Subtask 5.1 - Bench-Scale System and Structured DFM Fabrication																										
Subtask 5.2 - Bench-Scale System Commissioning																										
Subtask 5.3 - Structured Material Characterization																			1							
Subtask 5.4 - Structured Sorbent System Bench-Scale Testing																										
Milestone 5: Completion of > 100 hours of bench-scale system testing																							1			
Task 6.0 - Process Design and Modeling																							1	1		
Subtask 6.1 - Process Model Validation																										
Subtask 6.2 - Methanation Process Optimization																										
Subtask 6.3 - Methanation Energy Optimization																										
Subtask 6.4 - Process Cycle Design																										
Milestone 6: Validated process model for process design and optimization																										
Task 7.0 - Process Scale-up																										
Subtask 7.1 - Structured Material System Scale-up																										
Subtask 7.2 - Module and Unit Sizing and Manufacturability Assessment																										
Subtask 7.3 - Pilot Test System Design and Costing																										
Milestone 7: Pilot system P&ID and costs established																							1	1		\diamond
Task 8.0 - TEA, LCA and Technology to Market																										
Subtask 8.1 - Techno-Economic Analysis																										
Subtask 8.2 - Life Cycle Analysis																										
Milestone 8: Completion of TEA and LCA reports																							i d			