

Low Carbon Intensity Formic Acid Chemical Synthesis from Direct Air Captured CO₂ Utilizing Chemical Plant Waste Heat (ChemFADAC)

Project Number: DE-FE0032157

Front End Engineering Design Studies for Direct Air Capture Systems at Existing (retrofit) Domestic Industrial Plants Coupled with CO₂ Conversion Producing Low Carbon Intensity Products

Principal Investigator: Matt Atwood, Aircapture Co-Principal Investigator: Arun Agarwal, OCOchem Inc.

Presenter: Andy Louwagie, Aircapture

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 29th, 2023

🗧 Agenda

- Project Overview
- Technology
 Background
- Site Information
- Process Review
- Progress Highlights an Next Steps
- Acknowlegements and Questions

PROJECT TITLE			Budget Period 1																
	Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TASK No.	DESCRIPTION		22-Aug	22-Sep	22-Oct	22-Nov	22-Dec	23-Jan	23-Feb	23-Mar	23-Apr	23-May	23-Jun	23-Jul	23-Aug	23-Sep	23-Oct	23-Nov	23-Dec
1.0	Task 1.0 - Project Management and Planning																		
1.1	Subtask 1.1 - Project Management Plan																		
1.2	Subtask 1.2 - Technology Maturation Plan (TMP)		D																D
1.3	Subtask 1.3 - Workforce Readiness Plan																		
1.4	Subtask 1.4 - Cross-cutting Project Management and Site Access	M1																	M7
2.0	Project FEED Study																		
2.1	Subtask 2.1 - Project Scope and Design																		
2.2	Subtask 2.2 - Project Design Basis			M2															
2.3	Subtask 2.3 - Engineering Design Package								D					M3					
3.0	Project Economics and Business Case Analysis																		
3.1	Subtask 3.1 - Project cost estimate & cost model																		
3.2	Subtask 3.2 - Business Case Analysis (BCA)																M6		
4.0	Life Cycle Analysis and EH&S Analysis																		
4.1	Subtask 4.1 - Life Cycle Analysis (LCA)																D		
4.2	Subtask 4.2 - Environmental Health and Safety (EH&S) Analysis																M4		
5.0	Social and Environmental Impact																		
5.1	Subtask 5.1 - Environmental Justice Analysis																		
5.2	Subtask 5.2 - Economic Revitalization and Job Creation Outcomes																M5		

🕄 Project Background

E Project Objectives

- 1. Conduct FEED study with Class 3 project cost estimate using waste heat from host site
- 2. Perform LCA from the results of the FEED Study
- 3. Perform BCA from results of the LCA, FEED Study, and cost estimate
- 4. Quantify socio-economic impact through environmental justice, economic revitalization and job outcomes analysis

E DAC Technology Background

Step 1 (Capture): CO_2 is collected by moving air or mixtures of air and CO_2 rich gases across a proprietary contactor which adsorbs CO_2 .

Step 2 (Regeneration): The contactor is moved into a regeneration box where low-temperature steam flows across the contactor, removing CO_2 from the contactor, and the CO_2 is collected.

Polymeric Amine Sorbent

Monolithic Contactor

- Low pressure drop
- Low thermal mass
- High geometric surface area
- Compatible with various construction methods

Adsorption

900 seconds / monolith in ambient air

Desorption

Saturated Steam in less than 90 seconds

Monoliths & sorbents provided by Global Thermostat

E DAC Technology – Aircapture Modular DAC Unit

E DAC Technology Background

SN1: Berkeley, CA – August 2022

SN2: Berkeley, CA – Present

SN1: NCCC, Wilsonville, AL - March 2023 to present

E Formic Acid Electrolysis Process

COCchem Scale-up Progress and Plans

OCOchem is iteratively scaling its technology to full, industry sized, multi-cell systems

 Tiny Cell
 Small Cell
 Mid Cell

 10cm²
 100cm²
 150cm²

 2010
 Jan. 2021
 July 2022

 -2018
 -2018
 -2012

Tall Cell (current) 1600 cm² ~5 kg/day **Aug 2022**

We Are Here

Now! (2023)

Full Cell (target) 15,000 cm² ~35 kg/day Dec 2023

Multi-Cell Pilot Plant 4 Cells/Stack ~150 kg/day Dec 2024

Ongoing (2023-4) Funded Industrial-Scale Formic Production Module (achieves project finance bankability)

50-Cell Production Module 50x Cells/Modules 2,500 kg day 2025

Industrial Scale 50 Cell Production Module 1st Industrial-Scale Formic Production Plant

60 Module Production Plant 60x Modules/Plant 150,000 kg/day **2026-7**

> 50,000 tpy Plant (60 Modules)

Control Industry Height Electrolyzer System & Full Size Cell

Fully assembled 0.16 m² cell, with its electrolyte, CO2 gas and electrical connections

Cathode current collector and GED support plate with the CO_2 support plate underneath (1.5 m²)

Anode (plate coated with MMO) plate with the anolyte flow assembly underneath (1.5 m²)

Site Visit – Kennewick Fertilizer Operations – Q4 2022

OCOchem Process Building

> ChemFADAC Proposed Site Layout

 $2\,\mathrm{NH}_3(\mathrm{g}) + 4\,\mathrm{O}_2(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow 3\,\mathrm{H}_2\mathrm{O}(\mathrm{g}) + 2\,\mathrm{HNO}_3(\mathrm{aq})~(\Delta\mathit{H}\,\text{=}\,\text{--740.6 kJ/mol})$

General Process Flow – Updated per 2023 FEED Heat and Material Balance

Process Flow Diagram

7050/5,000 MT Gross/Net CO₂ Reduction

Steam Accumulator Modular DAC Forest Oxygen Scavenger Unit

Electrolyzer Electrodialysis Two-step Extractive Distillation

>98% Renewable Energy 100% Waste Heat Utilization

Initial Computational Fluid Dynamic (CFD) Modeling

Representative Single DAC Unit in Forest

Representative DAC Row In Grove

Preliminary HAZOP

- HAZOP completed for Aircapture DAC Unit (NCCC)
- DAC Forest, AC downstream, and OCO to be updated later in FEED

Initial LCA and BCA

<u>BCA</u> Pre-FEED Preliminary (5,000 tpy FA) To be updated post-FEED package

IRR (10-yr): 17.2%. IRR (20-yr): 23.2%.

Assumptions:

- Revenue (per MT FA): \$1,000;
- Depreciation (years): 20;
- Working Capital (of CAPEX): 3%;
- Cost of Capital: 5%;
- Credit Facility Tenor (yrs): 10

EJ & EJIA (Pre-FEED)

on-the-job training or apprenticeships (App.)

Duranana	lus also atoms	No.	Nature of the Jobs Created										
Process	Industry	Jobs ¹	MWE Occupation Text (code)	Wages ²	Edu. ³	Exp.	Trn. ⁴						
	Equipment	40	-Ind. machinery mechanics (499041) -Ind. production mgrs. (113051) -Misc. assemblers & fab. (512090)	\$23.15 \$52.25 \$13.51	HS BS HS	- 5 yr -	LT - MT						
DACUS System Constr-	Const- ruction	20	-First-line supervisors (471011) -Constr. & extraction ops. (470000) -Construction laborers (472061)	\$29.87 \$18.94 \$14.16	HS HS -	5 yr - -	- App. ST						
uction	Cement & Steel	1&3	-General & ops mgrs. (111021) -Production occupations (510000)	\$43.24 \$15.95	BS HS	5 yr -	- ST/MT						
	Engineering	16	Architecture & engineering (170000)	\$36.08	AS/BS	-	lnt.						
Enormy	Electricity	Satisfied by existing jobs at END											
Energy	Heat		Satisfied by exist	ng jobs at FNP									
	Chemicals	1	See DAC System Construction / Cement & Steel										
DACUS Oper- ations	0&M	7	-Install, maintenance, repair (490000) -Maintenance & repair, gen (499071)	\$27.57 \$17.24	Vary HS	-	Vary MT						
Notes: 1. system. 2 Associate	Number of jo 2. Average hou e's Degree (AS)	bs scaled rly wages , Bachelo	by factor of 0.025 from Rhodium Grou for time-based pay. 3. Educational re r's Degree (BS). 4. Training: Short- (ST)	ıp study ^{iv} o quirements), medium-	n 1 mil. to : High Scl (MT), and	onne/ye hool (HS d long-te	ar DAC 5), erm (LT)						

ChemFADAC Project Creates: Additional 59 regional jobs 5,000 MT CO₂ \$3.9M in payroll \$1.6M tax revenue

C Progress Highlights and Next Steps

- Initial Heat and Material Balance (Q1 2023)
- Heat optimization to meet FOA net 5000 MTA requirement (Q2 2023)
- Design capacity set to use all available waste heat to meet FOA requirement (Q2 2023)
- Initial DAC Forest CFD Modeling Concept Validation (Q3 2023)
- Initial LCA performed based on completed combined HMB (Q3 2023)
- Finalize FEED Package with Vendor Input (Task 2)
- BCA, LCA, EJ/EJIA scheduled to begin post FEED package (Tasks 3, 4, 5)

THE UNIVERSITY OF

Elliot Roth, Department of Energy Project Manager

Cost Share Partners

THE UNIVERSITY OF

THE UNIVERSITY OF

Questions?

Low Carbon Intensity Formic Acid Chemical Synthesis from Direct Air Captured CO₂ Utilizing Chemical Plant Waste Heat (ChemFADAC)

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 29th, 2023