

Transformational Sorbent-Based Process for Direct Air Capture (DE-SC002740)

Drs. Ravi Jain & Norberto Lemcoff InnoSepra, LLC Middlesex, NJ 08846 ravi.jain@innosepra.com, 908-672-7395

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 28 - September 1, 2023

Executive Summary

InnoSepra's direct air capture process utilizes physical sorbents with low heats of adsorption (~0.8 GJ/MT)

- >4-wt% CO₂ capacities at the CO₂ concentration in air, ~400-ppm
- Very long-sorbent life (>5 years) and low sorbent cost (<\$3/lb)
- Regenerable at low temperatures (<125°C)
- Can be quickly scaled up to very large quantities needed for commercial scale direct air capture
- Potential for up to 50% reduction in the energy needed for Direct Air Capture, <4 GJ/MT
- Potential for up to 50% reduction in the capture cost, <\$200/MT

During this Phase II SBIR project InnoSepra is

- Producing and testing the sorbents for direct air capture identified in another DOE project (FE0031953) at the lab scale
- Scaling up the technology for semi-bench scale testing
- Developing an engineering design to carry out a techno-economic analysis for a commercial scale DAC system

Presentation Outline

- Current Approaches for Direct Air Capture
- Background on the Proposed Technology
- Project Objectives and Overview
- Research Plan and Project Scope for the Phase II SBIR Project
- Phase II Work
- Summary

Current Approaches for Direct Air Capture

- A number of technologies have been proposed for direct air capture at close to ambient temperature. Among the proposed technologies two main technologies for Direct Air Capture include:
 - Reactive absorption on alkali metal hydroxides (Carbon Engineering)
 - Reactive sorbents based on impregnated amines (Climeworks, Global Thermostat, Silicon Kingdom Holdings, and a number of DOE funded projects)
- No technology for direct air capture using physical sorbents (this project) have been proposed

Current Approaches for DAC (Contd.)

- Carbon Engineering uses an absorption system with a number of steps (Liu et al., Sust. Energy Fuels, 2020)
 - Reaction with NaOH to convert CO₂ to Na₂CO₃
 - Regeneration of Na₂CO₃ by reaction with Ca(OH)₂ Na₂CO₃ + Ca(OH)₂ ----- \rightarrow CaCO₃ + 2NaOH
 - Calcination of CaCO₃ to produce lime at >900°C in a kiln;
 CaCO₃ + Heat -----→ CaO + CO₂
 - Hydration of CaO to produce Ca(OH)₂;
 CaO + H₂O ----→ Ca(OH)₂
- Global Thermostat and Climeworks use amine-impregnated sorbents with either indirect regeneration or direct steam regeneration (Eisenberger, U.S. patents 8,500,855 & 10,413,866; Gebald et al., Environ Sci Technol, v48, p2497, 2014)
 - A very significant amount of energy needed for physisorbed water (2-8 moles of water adsorbed per mole of CO₂), the estimated thermal energy needed is between 100 to 400 kJ/mol of CO₂; Gebald et al., 2014, p2502)

Technology Background

- Based on physical sorbents in structured form
- Base materials with high CO₂ capacity (>4-wt% at $p_{CO2} = 0.04$ kPa), low heats of adsorption (40-44 kJ/mol of CO₂)
- Chemical modification of base materials to improve capacity and selectivity during another DOE project
- Materials are low cost, easily scalable to quantities needed for commercial use (thousands of tons), very stable (>5 year life)
- Key innovation is **the novel combination of process** (leveraging prior developments) **and materials** (low energy consumption) that provides performance similar to or better than reaction-based processes with much lower regeneration energy and capital requirement

InnoSepra Process for Direct Air Capture

- The compressed air after the I.D. Fan is dried in a moisture removal unit.
 - The process works with any ambient humidity (0-100%). No impact of ambient humidity on performance.
- The CO₂ from the moisture depleted gas is adsorbed in the CO₂ adsorption unit.
- The CO₂ is desorbed through a combination of heat & electricity. The product CO₂ stream is very dry. No impact of oxygen in feed or co-adsorbed oxygen present during regeneration on sorbent life.
- The CO₂ produced from this process is further purified to pipeline quality gas.

Project Objectives

The Overall Objectives of various DAC projects

• Demonstrate the effectiveness of InnoSepra's DAC technology for pipeline quality CO₂ with a potential energy consumption of <4 GJ/MT, and a capture cost of <\$200/MT at a sufficiently large scale by 2028 or sooner

Specific Project Objectives

- To demonstrate the potential of the proposed transformational process to reduce the energy requirement for CO₂ capture to below 4 GJ/MT based on semi-bench scale testing
- Identify means to scale up the technology including the materials for commercial scale direct air capture
- Determine projected energy requirement based on semi-bench scale testing and a techno-economic analysis for a commercial scale DAC plant

Project Overview

- During this project InnoSepra is using the materials developed in another project and testing them at both the lab scale and the semi-bench scale to show that the process has a potential for a significant reduction in both the capital cost and the energy required for direct air capture compared to current state-of-the-art technologies
- Starting TRL: 3
- End of the Project TRL: 4
- DOE Project Manager: Zachary Roberts
- Total DOE funding: \$1,600,000
- Project Dates: 09/01/2021 to 03/31/2024

Project Scope

Materials Development & Lab testing

- Fabrication of Adsorption Test Modules, Sorbent Production
- Fabrication of Rotating Wheel Adsorber System for Air Drying
- Fabrication of Test Unit for CO₂ Capture
- Semi-Bench Scale Testing for Moisture Removal
- Lab Scale Testing for CO₂ Capture
- Model Development and Process Simulation

Semi-Bench Unit Fabrication & Testing, Techno-economic Analysis

- Design and Fabrication of semi-bench scale test unit
- Installation and testing of semi-bench scale unit
- Conceptual Design of a 250 TPD Direct Air Capture System
- Techno-Economic Analysis for a 250 TPD Direct Air Capture System
- Final Project Report

Project Deliverables

- Produce best sorbents for CO₂ enrichment identified in FE31953 for lab and field testing
- Process simulation of Direct Air Capture using laboratory and field test data
- Quantify the technical and economic benefits of the proposed Direct Air Capture based on process simulation, engineering design, and a techno-economic analysis
- Identify pathways for materials fabrication at large scale and further process scale up

Characterization of Materials for CO₂ Removal ($p_{CO2} = 400 \text{ ppm}, p_{N2} = 100\%$)

Sorbent type (Powder)	Q (wt % at 25°C)		
	CO ₂	N ₂	
Starting Material (Matl A)	1.25	0.99	
Modification 1 (Matl B)	2.83	0.97	
Modification 2	4.02	1.56	
Modification 3	7.44	2.82	
Modification 4 (Matl C)	5.28	4.26	

*Isotherm measurements using Micromeritics ASAP 2000 Sorption Balance. Equilibrium capacity over 5-wt% under DAC conditions.

Material C was Identified in FE31953

PowderLab laminateCommercial laminate

Moisture Removal Testing

Semi-bench scale testing for moisture removal

- Moisture removal dessiccant wheels from Novelaire and Munters were tested
- Feed flows: 5-40 scfm
- Feed temperatures: ambient (20-30°C)
- Regen flows: 5-40 scfm
- Regen temperatures: ambient (20-30°C)

Rotating Wheel Dehumidification Unit

Figure 2: Rotating wheel dryer for feed dehumidification

• A rotating bed dryer unit was fabricated

Figure 6. Lab Scale Air Drying Unit

Moisture Removal Process

NovelAire Desiccant Wheel

Wheel diameter = 10 inches Wheel depth = 16 inches

Moisture Removal Process

P1- Feed Plenum P2- Adsorption Outlet Plenum P3- Regen Outlet Plenum P4- Regen Inlet Plenum P5- Regen Inlet Plenum NovelAire desiccant wheel with plenums

The wheel is configured with 3 sections: 50% process air, 25% hot regen, 25% cold regen

Measurement of Pressure Drops

P1- Feed Plenum P2- Adsorption Outlet Plenum P3- Regen Outlet Plenum P4- Regen Inlet Plenum P5- Regen Inlet Plenum

Wheel rotation = 18 rph

Branch	Flow In	Flow Out	Flow In	Flow Out	P1	P2	Р3	P4	P5
	cfm	cfm	Location		in H2O				
Adsorption	40	<2	1	2	1.65	0	0.9	0.95	N/A
Adsorption	40	12.5	1	2	2.75	0.05	2.25	2.25	N/A
Regeneration	40	<2	3	4 & 5	0.95	0	1.2	0.85	0.9
Adsorption	38	15	1	2	0	1.9	2.5	2.5	2.5
Adsorption	38	15	2	1	0	1.9	2.5	2.5	2.5

- Pressure drops as high as 2.7 inches water were measured
- Extensive testing was carried out but both internal and external leakages did not allow to close the mass balance

Moisture Removal Process

Munters Desiccant Wheel

P1- Feed Inlet P2- Process Air Outlet P3- Regen Inlet P4- Regen Outlet The wheel is configured with 2 sections: 75% process air, 25% regen

Measurement of Pressure Drops

Р	rocess in l	P1	Process	s out P2	Regen in P3		Regen out P4		
Flow	Temp.	Press.	Temp.	Press.	Flow	Temp.	Press.	Flow	Press.
cfm	deg. C	in H2O	deg. C	in H2O	cfm	deg. C	in H2O	deg. C	in H2O
10	28.4	0.75	27.4	0.3	5	45-60	0.35	22.6	0.2
15	29.4	1.65	28.9	0.6	5	45	0.8	27.7	0.65
20	32.4	2.5	29.4	0.85	5	45	1	27.9	0.85
10	29.7	1.2	29	0.55	10	45	0.95	28.9	0.8
15	32.2	2.2	33.4	0.85	10	45	1.35	30.4	1.1
20	32.2	3	34.1	1.05	10	45	1.35	30.8	0.85

- Pressure drop across the process side of the wheel varies between 0.5 and 2.0 inches water, as the flowrate increases from 10 to 20 cfm
- Regen side pressure drop varies between 0.15 and 0.50 inches water

Measurement of Wheel Performance

Process in P1			Process out P2			
Flow	Temp.	Humidity	Flow	Temp.	Humidity	
cfm	deg. C	ppm	cfm	deg. C	ppm	
6	33	10,236	3.5	46	501	
10	35	10,236	6	48	1,813	
6	34	10,236	3.5	51	605	
6	33	12,122	4	47	952	
6	33	12,535	4	51	605	
10	36	11,722	6.5	35	3,441	
6	35	11,334	4	58	1,136	
6	36	12,203	4	59	796	
6	35	12,450	4.5	45	727	
5	30	12,122	3.25	45	379	
5	27	13,218	3.25	37	296	
4.5	27	12,122	3	29	294	
4	27	12,203	2.5	27	81	
3.5	28	12,203	2.25	26	80	

Wheel rotation was varied between 7 and 14 rph

- It is possible to dry feed air to below 100-ppm moisture. However, this leads to a significant drop in productivity
- Further studies are underway to improve the performance

CO₂ Capture Testing Breakthrough Testing with Beaded Material

Feed	400 ppm CO2 in N2				
Adsorbent					
Capacity calculate	ed from time to re	each 200 ppm			
T (oC)	Capacity (wt%)				
	F = 30 lpm	F = 20 lpm	F = 10 lpm		
0	4.06	3.57	3.93		
25	2.63	2.17	1.82		
50	1.61	1.13	1.27		
75	0.93	1.00	0.72		
100	0.71	0.51	0.48		

Preparation of Laminate Sorbents for CO₂ Removal

• Both in house development, and work with external partners to produce handsheets and sorbent structures

Testing of Commercial Laminates (Corrugated) - Material C

- Optimization of binder formulation and activation temperature to achieve high capacity and high adsorption rates
- Breakthrough capacity of about 2.5-wt% for >300°C activation

24

Laminate Structured Unit with Material C

Structure diameter = 5 in. Structure height = 8 in. Flow rate = 21 liters/min Temperature = $23^{\circ}C$

Summary of Sorbent-Based Process Development

- Sorbents identified in FE31953 show isotherms capacities higher than 5-wt% for a p_{CO2} of 0.04 kPa (400-ppm CO₂ in air) at 25°C
- Breakthrough capacities are between 2.5 and 4.0-wt%
 - The materials with the highest isotherm capacities do not necessarily have the highest breakthrough capacities
 - N_2 coadsorption can be significant and needs to be considered
- Rotating dryer beds from NovelAire and Munters tested at different flow conditions
- Commercially fabricated laminate structured beds show promising results and its performance being optimized through binder/activation temperature combination

Estimation of Regeneration Energy Required

- Model development for DAC System and Process Simulation
 - An adsorption process model for the CO₂ capture part of the process was developed
 - An ASPEN model combining the CO₂ capture and final upgrading was developed
 - Energy requirement for the process was determined based on lab scale testing
 - The energy requirement will be updated after scale up testing

Energy Needed for CO₂ Capture Based on Process Simulation

Product Flow	100	ton/day of CO ₂
Full Cycle Time	30	min
Each cycle need to desorb	2.08	tons of CO ₂ per cycle
	-	
Adsorption capacity	3.5	wt %
Amount of sorbent	59.5	ton adsorbent per bed
	r	
Regeneration Temperature	120	°C
Heat needed for sorbent	6.0	GJ
Heat need to desorb CO ₂	2.0	GJ
CO ₂ sensible heat	0.20	GJ
TOTAL HEAT REQUIRED	8.2	GJ per cycle
TOTAL HEAT REQUIRED	3.9	GJ/ton of CO_2
	•	
Assume all the heat is suppliued by steam		
Steam flowrate	7,300	kg steam/hr
	7.30	ton steam/hr
	1.75	ton steam/ton of CO ₂

Plans for Future Testing / Development

- Build larger CO₂ capture modules using Material C
 - An initial batch of material (more than 700-ft, 8" tall) was made. Needs to be optimized to improve CO_2 capacity.
- Flow testing with larger module
 - Using dry air from stage 1
- Update process model and the energy required for DAC
- Update initial techno-economic analysis
- Pilot scale testing in a future project

Summary

- The InnoSepra DAC Process utilizing low-cost InnoSepra DAC materials has the potential for a significant reduction in the energy required for direct air capture
- Process simulation indicates that it is possible to obtain high purity CO_2 (>95% purity) with physical sorbents while meeting the EOR/sequestration product specifications
- The process modeling indicates that the process has the potential to reduce the energy required by more than 50% over current DAC processes (<4 GJ/MT))
- The low energy requirement coupled with low material cost can lead to a CO₂ removal cost below \$200/MT
- Ability for quick deployment after pilot scale validation

Project Schedule

Project Gantt Chart

