FEED Study of Carbon Capture Inc DAC and CarbonCure Utilization Technologies Using United States Steel's Gary Works Plant Waste Heat (DE-FE0032154)

Lead Engineer

Principal Investigator

Co-Principal Investigator

Les Gioja Illinois Sustainable Technology Center

Prairie Research Institute University of Illinois at Urbana-Champaign Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign Chinmoy Baroi, PhD Illinois Sustainable Technology Center

Prairie Research Institute University of Illinois at Urbana-Champaign

ATIONAL

DOE/NETL 2023 Annual Review Meeting (August 30, 2023) Pittsburgh Pa.

OZINGA 🕑 Visage

1

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

OBJECTIVES

- FEED study for DACU (DAC + Utilization)
- Capture 5,000 tonnes/yr net CO₂ from air
- Utilize CO₂ in concrete and avoid cement production emissions
- Utilize waste heat from U. S. Steel in Gary, IN
- Demonstrate full CO₂ value chain
- Illustrate how full CO₂ value chain impacts job creation, regional economic development, and environmental justice

DAC Technology and Location

CCUS OVERVIEW

Core system: modular temperature vacuum swing adsorption system capable of accepting **multiple types of solid sorbents**

Go-to-market sorbent: amine in a hydrophobic structure

Anticipated costs: first generation capture costs of \$431 to \$570/t CO₂, falling to **\$73 to \$115/t CO₂ by 2030**

Low temperature: relatively low desorption heat of 100°C

Location of the DAC system

Tie-in to Waste Heat

DAC Provider

What we do

We develop and deploy direct air capture (DAC) machines that remove CO_2 from the atmosphere.

- Leading U.S. DAC company
- Founded in 2019
- HQ in Los Angeles, staff of 55+
- Funding of \$43m
- Technology platform accelerates innovation via open systems approach to sorbents
- Focus on developing CO₂ storage and utilization projects in North America
- DAC-only, no point source or EOR

ATIONAL

TECHNOLOGY

U.S. DEPARTMENT OF

DAC Progress

Progress to date

The team has completed preliminary engineering of the DAC (ISBL) scope and is working on detailed designs for the first full-scale modules, including:

- Refinement of the reactor & module designs; refinement of key process deliverables (e.g., heat & material balances, PFDs)
- Specification of key equipment & instrumentation; refinement of P&IDs
- Development of the control narrative and sequencing of reactor sets
- Finalization of interfaces with the OSBL, including both process and software interfaces
- Development of ISBL cost estimates
- Definition of operating procedures, including required training

Preliminary rendering of the DAC module

ozinga 🟵 Visage

Block Flow Diagram

8

ENERGY ecotek

Plant Layout

ozinga ⊕∨isage

NATIONAL

TECHNOLOGY

General Views

Waste Heat Recovery (connected to one or two stacks)

Utilities Building

Maintenance / Offices Building

NATIONAL

TECHNOLOGY

OZINGA 🟵 Visage

ENERGY ecotek

Logistics

Ozinga Plant Locations U. S. Steel DAC Site Location Storage/Hub Locations

Ozinga Potential Illinois Gas Hub Location

Sargent & Lundy

OZINGA 🕑 Visage

CURRENT DIRECTION

- Pipe from U.S. Steel to IN hub
- **Truck from IN hub** to IL hub
- Small delivery trucks from hubs to batch plants
- **Use CNG trucks** with Ozinga RNG

NATIONAL

CarbonCure Cement Carbonization Technology

CarbonCure's retrofitted equipment into concrete plants

Table 6

Summary of the Environmental Impact on 1 cubic meter of concrete.

Previous literature indicated significant CO2 reduction by curing concrete with captured CO2 S. Monkman, M. MacDonald / Journal of Cleaner Production 167 (2017) 365-375

OZINGA 🕑 Visage

UTILIZATION

Orange: Supplied by CarbonCure Black: Supplied by Concrete Producer Grey: Supplied by CO₂ Supplier UTILIZATION Reclaimed Water Technology

Approx. 3% concrete is unused Reclaimers recover aggregates and recover cementitious slurry (Reclaimed Water) Can avoid 3% cement

Legend

1	CO ₂ Tank Sized according to anticipated CO ₂ usage
2	Gas CO2 Transfer Line
3	CarbonCure Valve Box
4	Reclaimed Water Treatment System
5	Slurry Pump
6	Slurry Infeed Pipe
1	Treated Slurry Return
8	Reclaimed Water Slurry Tank
9	Aggregate Reclaimer
\sim	
(10)	Reclaimed Aggregate
(10) (11)	Reclaimed Aggregate
(10) (11) (12)	Reclaimed Aggregate CarbonCure Control Box Process Monitoring Sensors
(10) (11) (12) (13)	Reclaimed Aggregate CarbonCure Control Box Process Monitoring Sensors Reclaimer Control Panel

COMMUNITY

Environmental Justice Analysis

- <u>Objective</u>: Analyze the impact of proposed DACU project on the local/surrounding communities and assess the potential distribution of Justice40 benefits and disbenefits.
- Identified local communities that have been disproportionately impacted through Stakeholder Mapping process.
 - Specific focus on Disadvantaged Communities (DAC) near both Gary Indiana U. S. Steel host site and Ozinga utilizations sites in Chicagoland region.
- Develop strategy for engagement of surrounding communities involving information exchanges and mixture of engagement techniques

EJ Profile of Surrounding Communities										
								Less High		
					Climate Hazards	RMP		School	Low Income	Outage
	Census Tracts	City	DAC	Water Discharge	Loss of Life estimate	Proximity	Job Access	Education	Population	Duration
1	18089010205	Gary	1	67.54584742	24.79550173	4.14556	-7.8	0.10983264	0.6339286	0
2	18089011500	Gary	0	5.347620509	23.23925267	0.4134	-6.2	0.07897664	0.4355401	0
3	18089021800	Hammond	1	8.79048E-06	30.50083174	0.43947	-6.6	0.18703704	0.4664804	0
4	18089041700	Lake Station	1	0.021150634	44.50844801	0.17284	-5.3	0.16077044	0.4762955	0
5	18089042100	Hobart	0	0.010867705	44.95112663	0.16714	-5.3	0.1795825	0.1704918	0
6	17031820202	Hodgkins village	1	24.47545198	52.36668087	3.86801	-8.3	0.20405465	0.3304094	4487
7	17031838800	Chicago	1	0.005783617	50.95478354	3.50506	-8	0.25687104	0.6737589	4487
8	18089040200	Whiting	1	8.46733E-05	28.37542446	5.41235	-6.5	0.16851228	0.2092352	0
9	17043845803	Bridgeview village	1	0.115776886	65.8697535	1.1047	-7	0.07834101	0.2456286	4487
10	17031810200	Evanston	1	15.43014316	45.79249096	1.08785	-9.2	0.14474865	0.3082251	4487

OZINGA 🟵 Visage

Acknowledgements

Name	Organization
Elliot Roth, Mariah Young	National Energy Technology Laboratory / US Department of Energy
Les Gioja, Mike DeYoung, Bajio ,Varghese Kaleeckal, Maholy Echeto Palmar, Sebastiano Giardinella, Ryan Larimore, Scott Prause	Prairie Research Institute / University of Illinois
Patricia Loria, Meghan Kenny, Saeb Besarati, Jonas Lee	Carbon Capture Inc.
Brenda Petrilena, James Hoppe	U. S. Steel Corporation
Kevin Cail	CarbonCure
Ryan Cialdella	Ozinga
Alberto Baumeister, Claudio Mazzei	Ecotek
Paula Guletsky	Sargent & Lundy
Daryl-Lynn Roberts, Will Johnson	Visage Energy

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0032154

15

tek