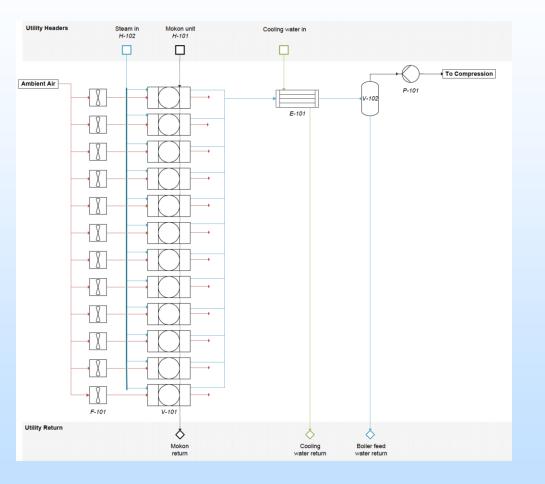
Aerogel Adsorbent Polymers for Direct Air Capture of CO₂ DE-FE0032251

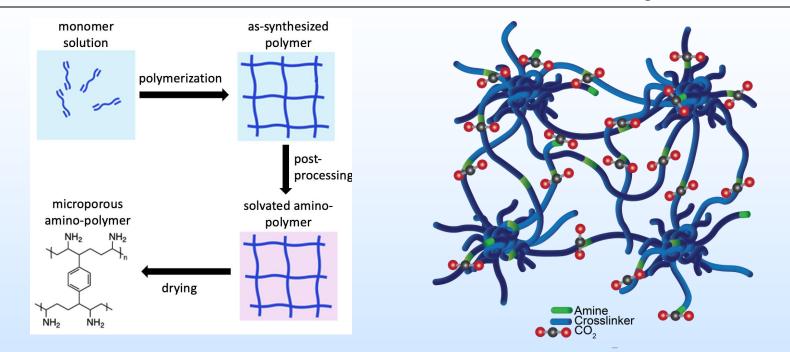
Jonathan E. Bachman, Ph.D. Palo Alto Research Center

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

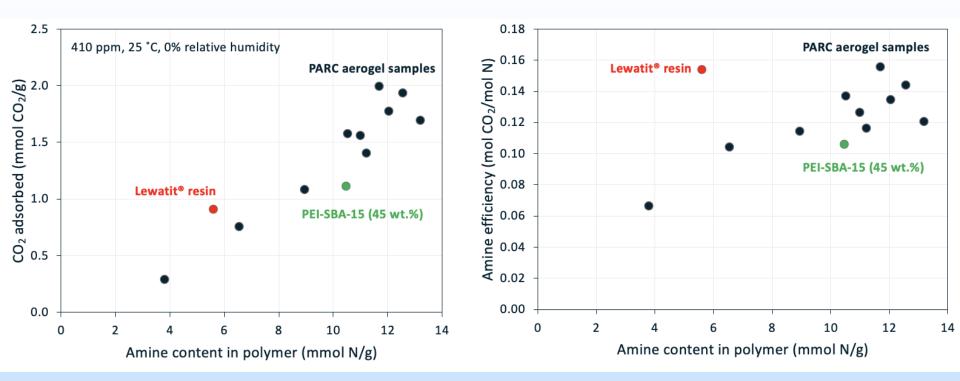


Project Overview

- Funding: \$2,999,642 Federal, \$749,907 Cost Share
- Project Participants: Palo Alto Research Center, Lawrence Livermore National Laboratory
- Awaiting project kick-off
- Overall Project Objectives:
 - Optimize the structured adsorbent, contactor, and DAC system operation for improved volumetric productivity, pressure drop, and capacity fade towards the general target DAC cost of < \$100/ton CO₂e.
 - Identify a low-cost, scalable manufacturing method for structured adsorbent production.
 - Develop a laboratory-scale DAC system with a continuous production rate of > 1 kg CO₂/day at a purity of > 90% CO₂, demonstrating < 0.005% / cycle capacity fade over 1,000 h of operation.

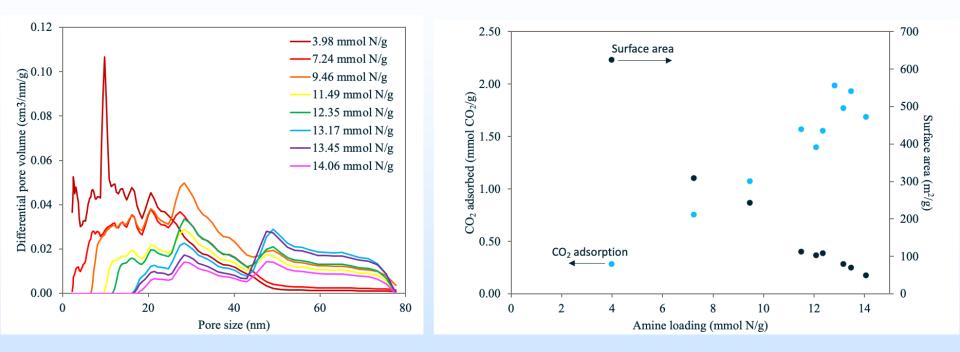

DAC Process - TVSA

- The DAC system uses a TVSA process that adsorbs under ambient conditions and desorbs under moderate temperature (80-100 °C) and reduced pressure.
- Initial engineering model includes direct steam and/or indirect heat for regeneration.
- Several contactors in parallel ('contactor bank' or 'module') enable continuous CO₂ production.

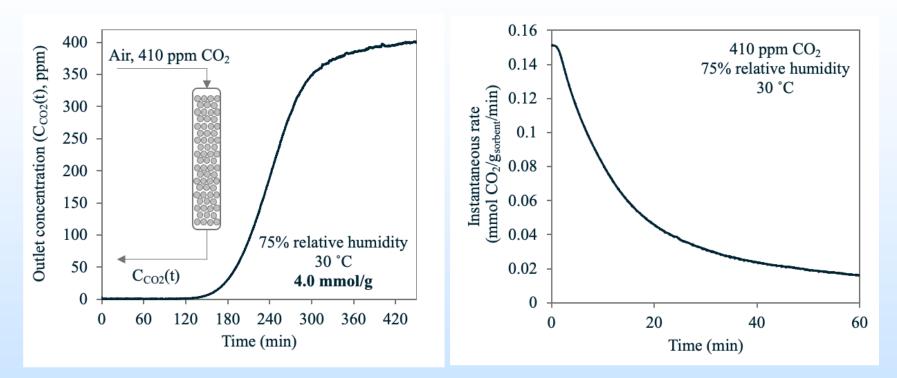


Adsorbent Chemistry

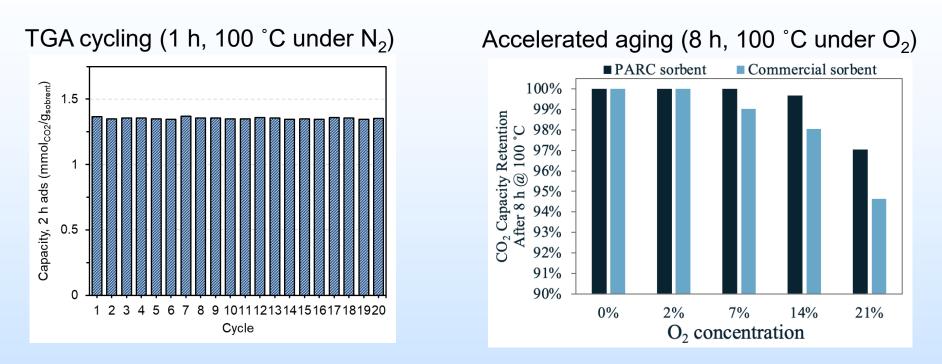
- Based upon work supported by Department of Energy under Award Number DE-FE0031951 (Tunable, Rapid Uptake Amino-Polymers for Direct Air Capture of Carbon Dioxide, TRAPS).
- Amine-containing polymer aerogel featuring high amine loading (> 10 mmol/g).
- Synthesized by radical polymerization of vinyl-containing monomers followed by postfunctionalization and drying.


Structure Property Relationship – CO₂ Adsorption & Amine Efficiency

- Amine content is controlled by the monomer ratio in polymerization.
- Elemental analysis was used to determine N content in the material and thermogravimetric analysis (TGA) was used to measure CO₂ adsorption.


Structure Property Relationship – Surface Area & Pore Structure

- Average pore size increases and pore volume decreases with increasing amine loading.
- CO₂ adsorption increases and surface area decreases with increasing amine loading in the polymer.


Transient Breakthrough Testing

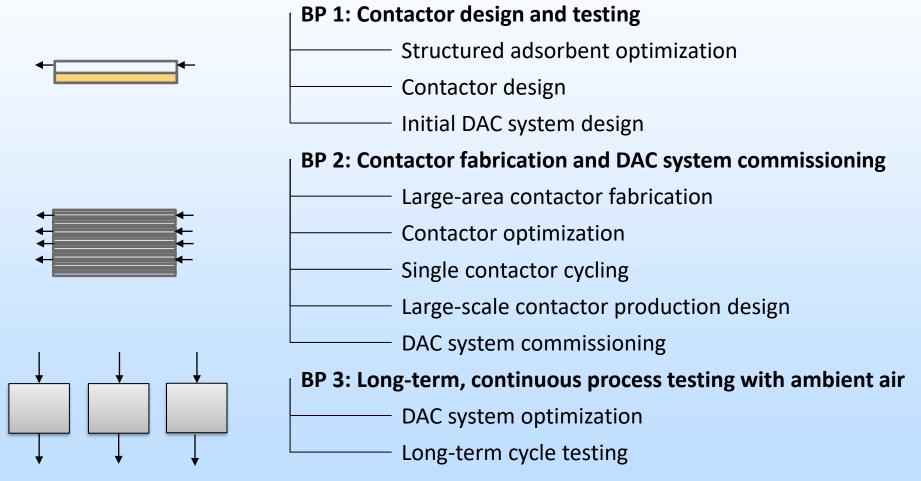
- CO₂ adsorption doubles under high relative humidity, reaching > 4 mmol CO₂/g equilibrium adsorption capacity.
- High flow rate testing revealed that 'extrinsic' mass transport is limiting the adsorption rate (increasing flow/mass ratio always increased adsorption rate).

Thermal & Oxidative Stability

- No capacity loss is observed under inert regeneration at elevated temperature.
- Significant improvement in oxidative stability relative to the commercial adsorbent under accelerated aging conditions (0.0007 %/min capacity loss under 14% O₂ compared to 0.0041 %/min for the commercial material)

Technoeconomic Impact of Adsorbent Performance

 Increasing adsorption rate and working capacity results in fewer contactors required (based on 100,000 ton/year DAC facility):


Parameter	PARC DAC	Baseline DAC	Units
Average adsorption rate	0.087	0.03	mol/kg/min
Adsorption time	10	10	min
Working capacity	0.87	0.3	mol/kg
Desorption time	4.5	1.5	min
Total cycle time	14.5	11.5	min
Contactors per bank	12	12	-
Number of contactor banks	10	22	-
Number of contactors	120	264	-
Number of blower fans	120	264	-

 A lower sorbent requirement translates to lower capital and operational costs, resulting in a ~60% decrease in CO₂ capture cost relative to a baseline material.

	PARC DAC	Baseline DAC	Units
Total cost of capture	\$170	\$419	\$/ton CO ₂
Capital Expenditure	\$17	\$39	\$/ton CO ₂
Sorbent Cost	\$96	\$278	\$/ton CO ₂
Other Operating Cost	\$16	\$23	\$/ton CO ₂
Utilities cost	\$40	\$79	\$/ton CO ₂

Technical Approach - SWAAP

parc Part of SRI International

Success Criteria

Budget Period 1	Budget Period 2	Budget Period 3
 Demonstrate SA with > 1.35 mmol/g under 0% RH. Demonstrate contactor with 	 Produce the structured adsorbent needed to construct laboratory DAC 	 Optimize volumetric productivity and pressure drop on the DAC system.
0.0435-0.087 mmol/g/min adsorption rate (0-75% RH).	 system. Build and commission DAC system. 	 Demonstrate > 1 kg CO₂/day production, > 90% CO₂ purity, and < 0.005% /cycle capacity
 Establish baseline volumetric productivity, pressure drop, and capacity fade. 	 Demonstrate that the DAC system is capable of achieving > 1 kg CO₂/day at > 90% 	fade over 1,000 h of cumulative operation.Final TEA/LCA
 Finalize contactor design and regeneration process for DAC system. 	purity.Develop a scale-up design for	
	structured adsorbent and	
 Determine system requirements for 1 kg CO₂/day demonstration. 	contactor production.	
narc		11

Part of SRI International

Plans for Commercialization

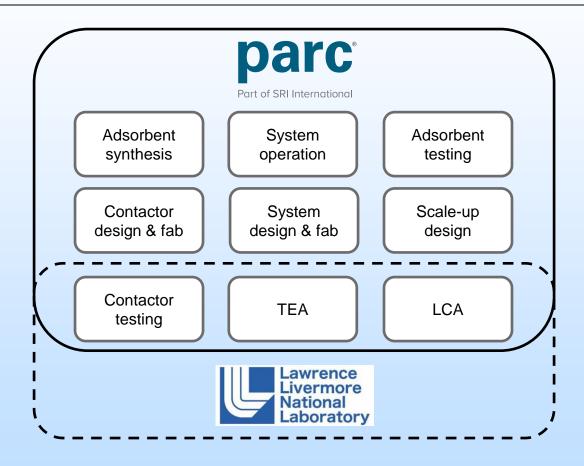
- PARC's commercialization strategy is being executed in parallel with the Government project.
- Development of "next-gen" structured adsorbents, contactors, and DAC systems is occurring in-house, while working with partners to accelerate deployment of PARC's materials into CO₂ capture systems.
- Commercialization will be paced by adsorbent manufacturing scale-up while working with partners to deploy the material.
 - 2023: 100-300 g-scale
 - 2024: 20-80 kg-scale
 - 2025: 100-1,000 kg-scale

Conclusions

- Our work demonstrates a novel CO₂ adsorbent, based on an amine-containing polymer aerogel, and its state-of-the-art performance under DAC conditions (> 4 mmol/g capacity, > 0.15 mmol/g/min adsorption rate).
- The adsorbent properties achieved are expected to substantially reduce the cost of DAC compared to currently available adsorbent materials.
- Our goal going forward is to develop a bench-scale DAC system with improved volumetric productivity and low pressure drop, using a scalable, low-cost structured adsorbent.

Acknowledgements

- NETL, Office of Fossil Energy and Carbon Management
 - The material is based upon work supported by the Department of Energy under Award Number DE-FE0032251.
 - Lei Hong, Caitlin Lecker
- Palo Alto Research Center (PARC)
 - Youkabed Ostedhossein, Norine Chang, Gabriel Iftime, Jin Ki Hong, Jessica Medrado, Alex Rousina-Webb, Kay Xia, David Schwartz, Stephen Meckler, Mahati Chintapalli
- Lawrence Livermore National Lab (LLNL)
 - Nathan Ellebracht, Elwin Hunter-Sellars, Melinda Jue, Wenqin Li, Simon Pang
- SoCalGas and SRI International are acknowledged for cost share support.



Appendix

Organization Chart

Gantt Chart

	Overall quarter	1		2	3		4		5		6		7		8		9		10		11		12	
	Year	1		-			_		2		_		_			_	3			_				
	Quarter	1		2	3		4		1		2		3		4		1		2		3		4	
ask/subtask #	# Task/subtask title	1	2 3	4	567	8	9 10	11 1	2 13	14 15	16 1	18	19 20	0 21	22	23 24	25	26 27	28	29 30	31	32 33	34	35
1	Project management and planning						D1								D1									
1.1	Project management plan	D1.1																						
1.2	Technology maturation plan		D1.2																			D1.2		
1.3	State point data table																					D1.3		
2	Conduct Diversity, Equity, and Inclusion Activities (Year 1)																							
3	Perform initial TEA			D3																				
4	Perform initial LCA			D4																				
5	Perform preliminary contactor design and testing																							
5.1	Perform structured adsorbent optimization																							
5.2	Identify key parameters for contactor design																							
5.3	Develop an initial design of the DAC system																							
6	Conduct Diversity, Equity, and Inclusion Activities (Year 2)																							
7	Construct contactors and DAC system																							
7.1	Fabricate contactors																							
7.2	Optimize single contactor																							
7.3	Conduct long-term cycling in single contactor																							
7.4	Conceptually design large scale adsorbent and contactor production																							
7.5	Integrate contactors with auxilliary components and comission DAC system																							
8	Conduct Diversity, Equity, and Inclusion Activities (Year 3)																							
9	Complete final TEA																							
10	Complete final LCA																							
11	Complete technology EH&S risk assessment																							
12	Perform long-term, continuous process testing using ambient air																							
12.1	Optimize the DAC system operation																							
12.2	Conduct long-term cycle testing																							