

Polymer Sorbents Fibers for Direct Air Capture

Ali Sekizkardes Research Scientist

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Ali K. Sekizkardes^{a,c,}, Victor Kusuma^{a,c}, Jeffrey T. Culp^{a,c}, Patrick Muldoon^{a,c}, James Hoffman^a, David Hopkinson^b and Janice Steckel^a

^aU.S. Department of Energy, National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236 ^bU.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA ^cNETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236

Research Objective

Adsorbent Portfolio

DAC Sorbents

"Targeted geometries can have 10-20 times less pressure drop compared to packed reactors"

Technology Background: Aminated Sorbents

macro porous particle (SA= 100-200 m²/g)

amine impregnated sorbent

- high CO₂ uptake
- high polyamine loading (50%)
- slow CO₂ diffusion
- regeneration (>100 °C)
- less amine leaching
- oxidation problem

Energy Environ. Sci., 2022, 15, 1360-1405

Technology Background: Aminated Sorbents

Sekizkardes, A. K.; Hammache, S.; Hoffman, H. S.; Hopkinson, D. ACS Appl. Mater. Inter. 2019, 11, 30987–30991

Processible Sorbent Concept

Sekizkardes, A. K.; Hammache, S.; Hoffman, H. S.; Hopkinson, D. ACS Appl. Mater. Inter. 2019, 11, 30987–30991

Processible Sorbent Concept

- Can be scaled up with cost-efficient synthesis
- Soluble in common solvent and can be processed
- Tunable chemical structure
- High surface area and pore volume
- Library of different sorbents can be prepared

Amidoxime Functionality

• Amidoxime functionality for amine tethering

Energy Environ. Sci., 2011, 4, 4528–4531

Chem. Commun., **2012**, *48*, 9989-9991 by Cafer Yavuz group

Amidoxime Functionalized PIM-1

Amines considered:

- Diethylenetriamine (DETA)
- Tris(2 aminoethyl)amine (TAEA)
- Tetraethylenepentamine (TEPA)

• Control study with neat PIM-1

FT-IR spectrum of neat PIM-1 and PIM-1 -DETA (control sample)

PF-15-TAEA-fiber sorbent

- Fibers proceed only from the sorbent formulation, no additives needed
- Cost-efficient synthesis and large-scale processibility
- High surface area substrate polymer
- Molecular amine use enabled by amidoxime functionality
- Amine loading is <25% in the sorbent

Hopkinson D., Sekizkardes, A. K, Hoffman J., Yi S., Kusuma V. US Patent App. 17/891,153

Wet spinning of PF-15

Hopkinson D., Sekizkardes, A. K, Hoffman J., Yi S., Kusuma V. US Patent App. 17/891,153

PF-15 fibers SEM

PF-15 fibers porosity

CO₂ Adsorption Test (Simulated Air Gravimetric)

Breakthrough analysis (Simulated Air RH 50%)

Breakthrough curves of H_2O (red), N2 (light green) and CO_2 (blue) of the sorbent PF-15-TAEA under simulated wet air conditions: 400 ppm CO_2 concentration and 50 % RH at 25 C. The data was collected by Micromeritics Instrument Co.

Other form factors:

Electrospun fibers

fibers: 30x5cm

diameter of fibers: 2 micron

fiber diameter distribution

Filler incorporation in PF-15 fibers

Filler incorporation in PF-15 fibers

Computational Design of Alkylamine-Functionalized Polymer Sorbents

reaction free energy and enthalpy than the existing TAEA amine)

Molecular dynamics (MD) simulations are used for screening and to understand the adsorption mechanism

NATIONAL

HNOLOGY

- Explore different sorbent formulation with the help of computational team.
- Monolith fiber scale up
- Electrospun fiber production
- Flat sheet fiber production
- Testing the sorbents under simulated DAC conditions
- Exploring the filler candidates to be used in the polymer

PIM-1-AO backbone has:

- Stiff, straight sections that consist of fused rings (ladder polymer)
- Sharp kinks caused by the spiro center

Gray = carbon Red = oxygen White = hydrogen Blue = nitrogen1

TPLs:

David Hopkinson Janice Steckel

LRST Supervisor: Victor Kusuma

Sorbent Development and Characterization:

Patrick Muldoon Victor Kusuma Jeffrey Culp Surya Tiwari James Hoffman Ashley Miles

Acknowledgement:

This work was performed in support of the U.S. Department of Energy's Fossil Energy Carbon Capture Research Program. The Research was executed through the NETL Research and Innovation Center's Transformational Carbon Capture FWP.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

Thank You