Demonstration of a Continuous Motion Direct Air Capture System

DE-FE0031957 2023 Carbon Management Research Project Review Meeting

Eric W. Ping August 29, 2023

GLOBAL

Project Overview

Federal: \$2,499,996 Cost Share: \$850,000 Budget Period 1: 1/1/2024 7/31/2022 Budget Period 2: 8/1/2022 – 7/31/2024 Budget Period 3: 8/1/2024 – 1/31/2025

Project participants:

Global Thermostat Georgia Institute of Technology National Renewable Energy Laboratory VADA, LLC Zero Carbon Partners

Primary Objectives: Design and construction of a field-test unit demonstrating a continuous-motion direct air capture process, reducing complexity, CAPEX, & OPEX while increasing reliability

Total: \$3,349,996

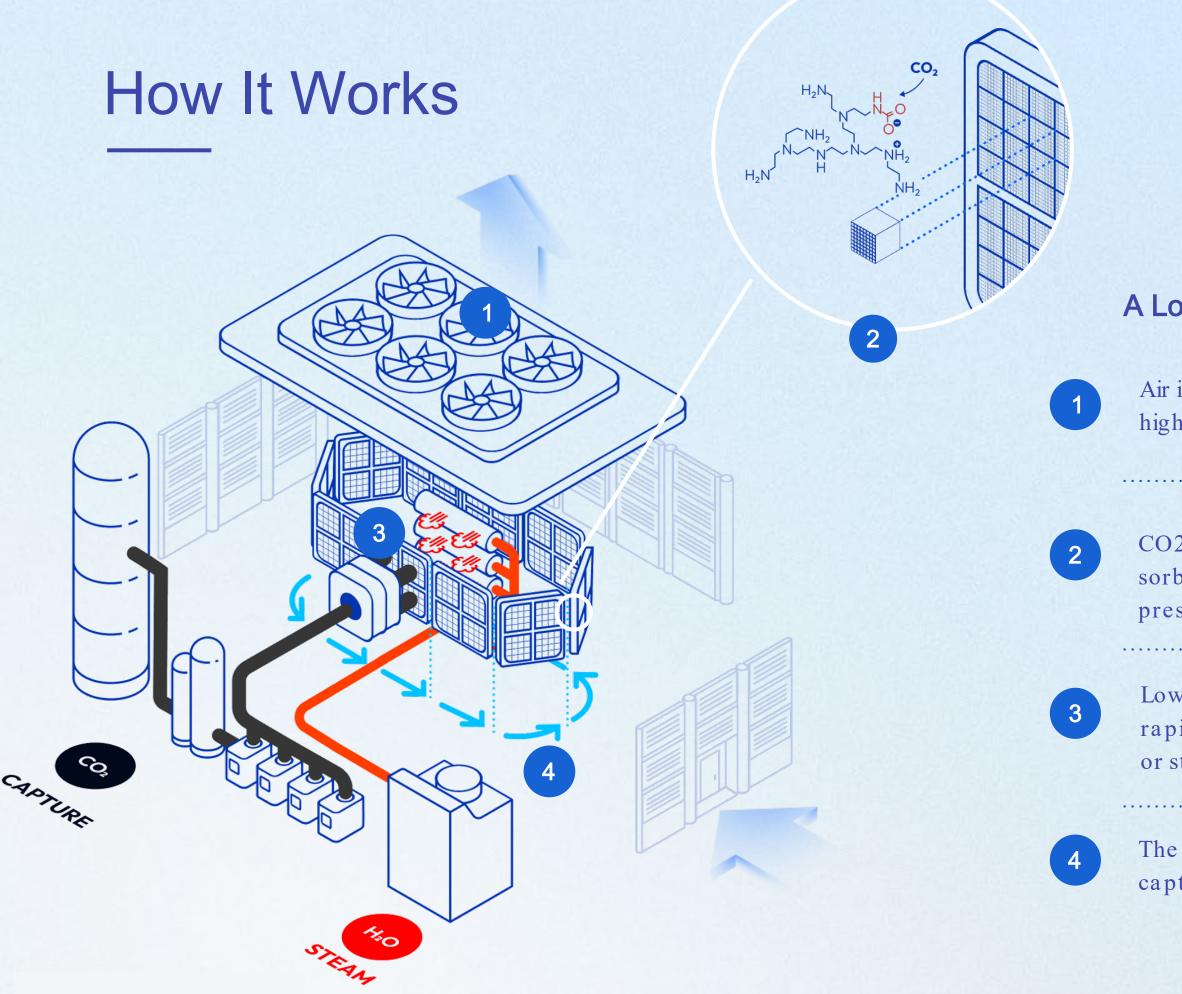
Technology Background: Key Drivers of Low Cost

	Factor	Significance	Barrie		
	Move Air	Dilute atmospheric CO2 requires significant movement of air	Fan cos		
	Capture CO2	Materials to selectively adsorb CO2	Sorbent		
ရာ	Release CO2 (Regeneration)	Time spent releasing CO2 is time not spent capturing	Therma Cycle tir		
\$	Efficient Capital	DAC CO2 cost is dominated by Capex	Mechan High cyc		
R	Sca la bilit y	Effectiveness as a climate solution	Fabrica Reliabili		

ers

st and energy requirements

nt efficiency, robustness, lifetime


alenergy requirements iming

nical complexity ycle rate

a bility, Modularity ility, Operability

Global Thermostat DAC Module: Simple, Modular & Highly Efficient

A Low Temperature, Solid Adsorbent Process

Air is pulled through our custom-designed contactors via high-efficiency, cooling-tower style fans

CO2 molecules are selectively trapped by proprietary amine sorbent embedded in our ultra-high surface area, low pressure drop contactors

Low temperature steam directly injected onto the contactor rapidly releases the CO_2 , concentrating it for collection, use, or storage

The regenerated contactor panel reenters airflow to capture more CO_2 , restarting the cycle

OBAL

HERMOSTAT

DAC Products – GT Commercial Modules

REQUIREMENTS

- Make efficiently deployable at many scales
- Enable operations across a broad spectrum of ambient conditions
- Utilize existing, scalable supply chains

OUR SOLUTION

- Capture occurs in stackable mm-sized channels, enabling scaling to almost any capacity
- DAC modules designed for mass fabrication
- Capable of operating across a wide range of temperatures, humidities, and other ambient factors
- Contactors & sorbent produced by global industrials

All scales use the same core contactor and regen process: Move, Seal Evacuate **Steam Desorption** Cool Down Unseal, Move

For Climate-Scale Applications

NETL-Funded Engineering Design with Sargent & Lundy, Black & Veatch,

Thursday X:Xxam

K-Series (Kilotonnes) For Commercial & Industrial Applications Operated Since Q4 2022

T-Series (Tonnes) For Value Chain Pilots

Built & Operated Continuously, Semi-Autonomously since 2021

7

Advantages to Re · High efficiency Proprietar Monolithic

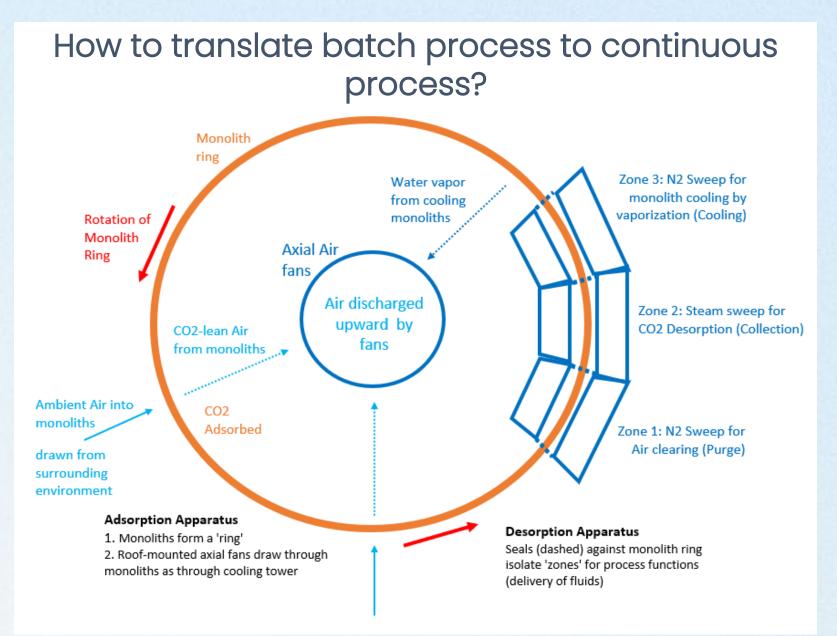
Benefits of applying multibed adsorption paradigm via continuou movement of active media through a regeneration zone:

- Reduction in mechanical force requirement, complexity
 - No acceleration, deceleration
- Steady-state utility & energy flows
- Simplifies direct heat & mass integration
 - No intermediate storage necessary
 - Steady-state zone effluent recycling

Requires careful consideration of movement, sealing methodo minimize impact of continuous movement on CO2 product adsorbent lifetime, and utility minimization

 Rapid cycling Direct steam regeneration High capital utilization
Multibed adsorption Contactor movement
STESAN,

Technical Approach/Project Scope


- Project Scope & Goal Develop and demonstrate continuous DAC prototype based on the GT technology platform
 - <u>Development philosophy</u>: design big, build small: prototype the elements to enable successful climate-scale DAC deployments

Key Project Milestones

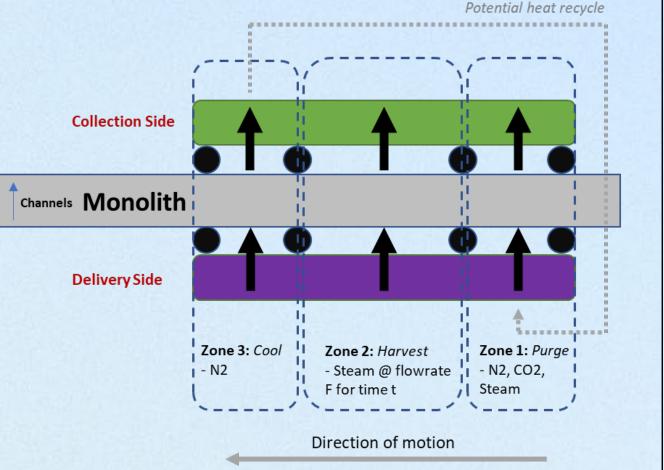
- Mechanical design complete, process basis established
- Fabrication & commissioning of mechanical movement system complete
- Installation & commissioning of full balance of plant for cDAC pilot, ready for field test campaign • (upcoming)
- 30 day field test campaign demonstrating targeted performance metrics (BP3) •

Continuous Process Concept

Initial Technology Concept

GT R&D: <u>Process Innovation</u>: Novel DAC embodiments utilizing core technology features, but realized in a different *process* and *capital design* offering potential economic advantages

Area

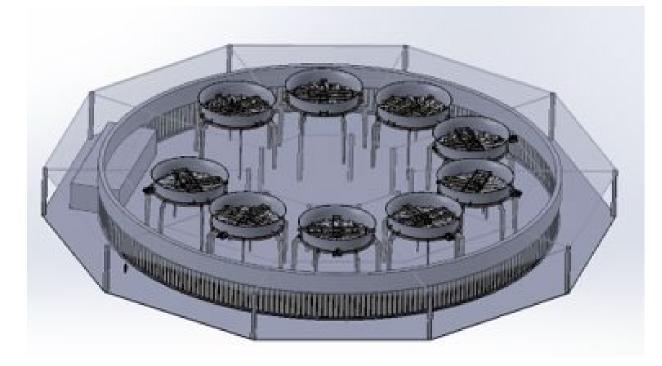

Capital De Movemen

Top View Schematic

Process D Cooling, p Potential heat recycle

GLOBAL

THERMOSTAT



DAC Module Regeneration Concept

	Approach
<u>esign</u> : nt, sealing, airflow	Iterative design and mockup testing
<u>Design</u> : ourging	Experiment & modeling

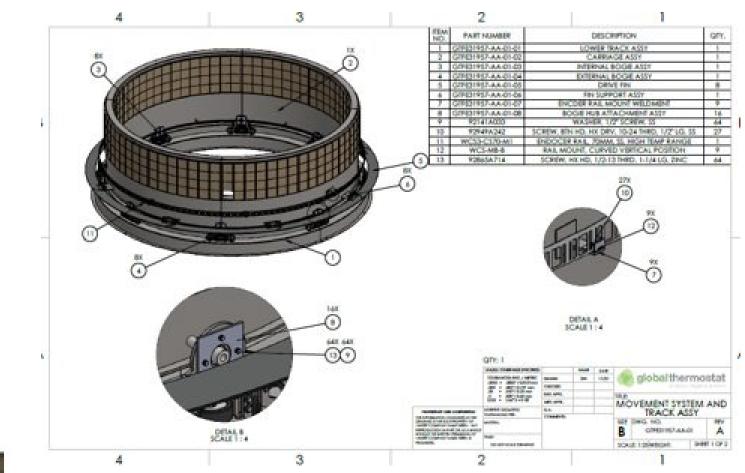
cDAC Module Concept

Modularize around air movement

~50 kta plant module used for scale assessment

- concept evaluation
- or out (in a variety of ways)

Module subareas:

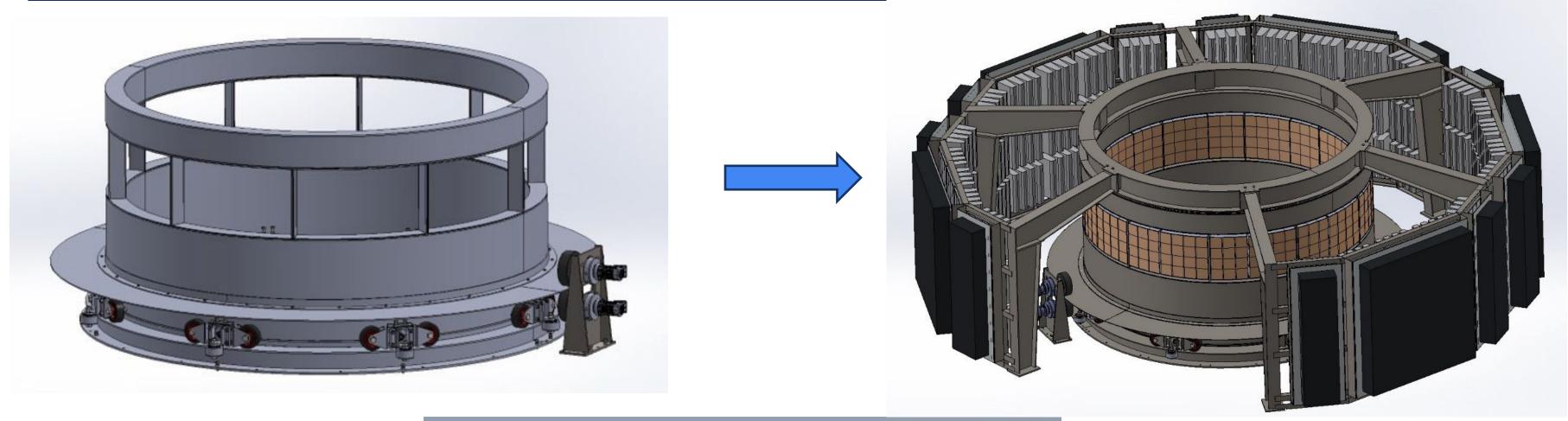

- Movement system ullet
- **Regeneration** area (zones) ullet
- Air processing (adsorption)

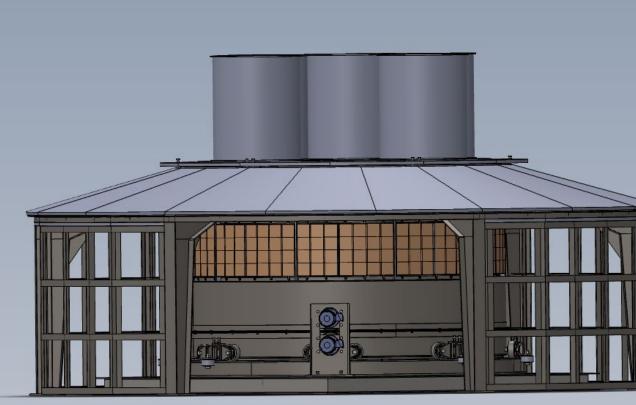
9 fan plant module as base scale for mechanical

Base module from which large installations are scaled up

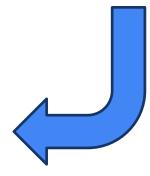
<u>Development philosophy</u>: design big, build small

cDAC FTU Design Recap




Front Facing View

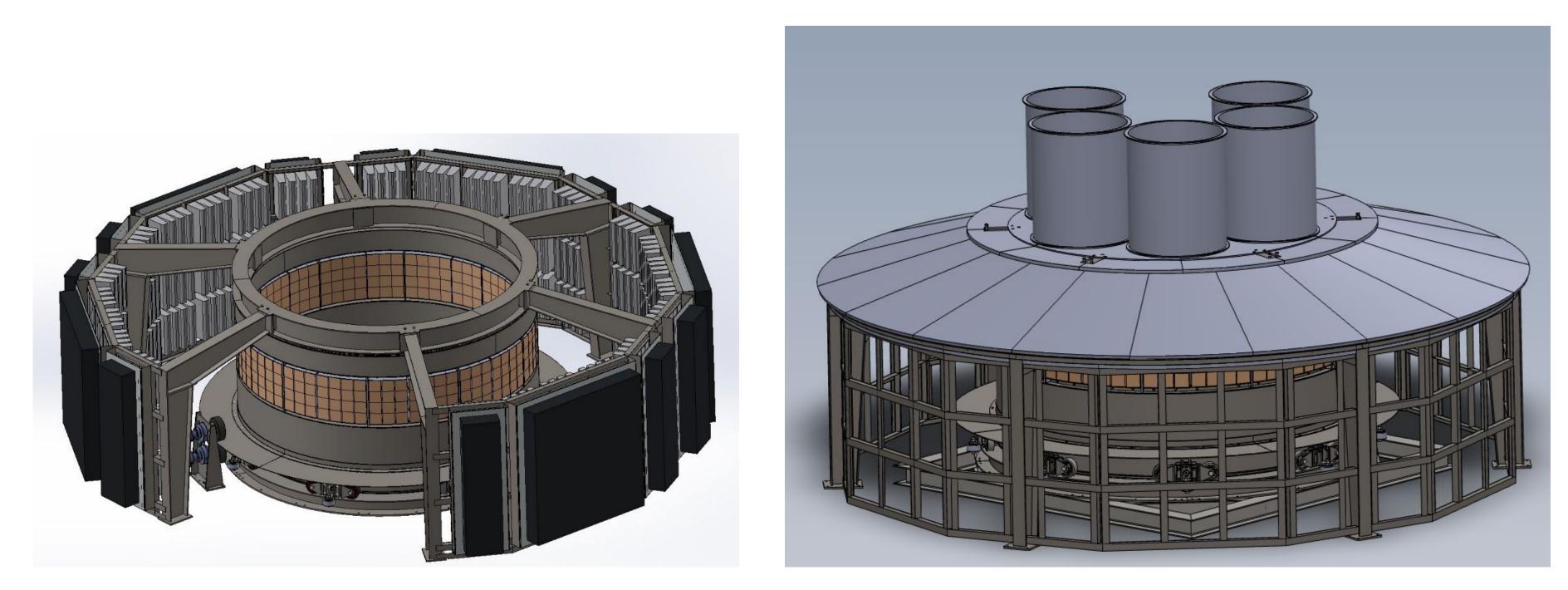
- ullet
- movement system


Prototypes for testing dynamic sealing for regeneration zones, and flow uniformity and efficiency of air processing Carriage design concept for mechanical

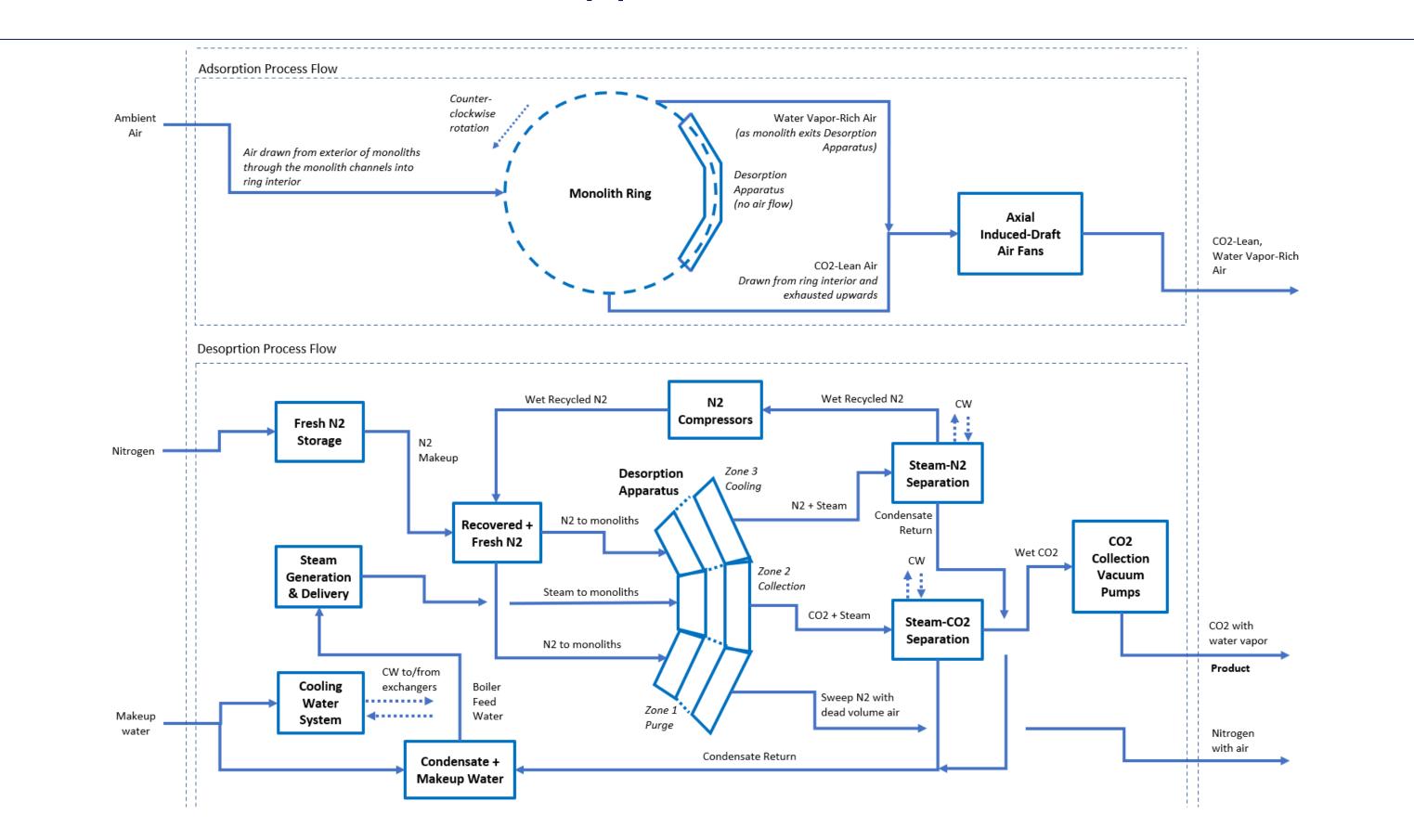
Phased cDAC FTU Fabrication

Mechanical System Fabrication & Commissioning – Phase 1 Complete

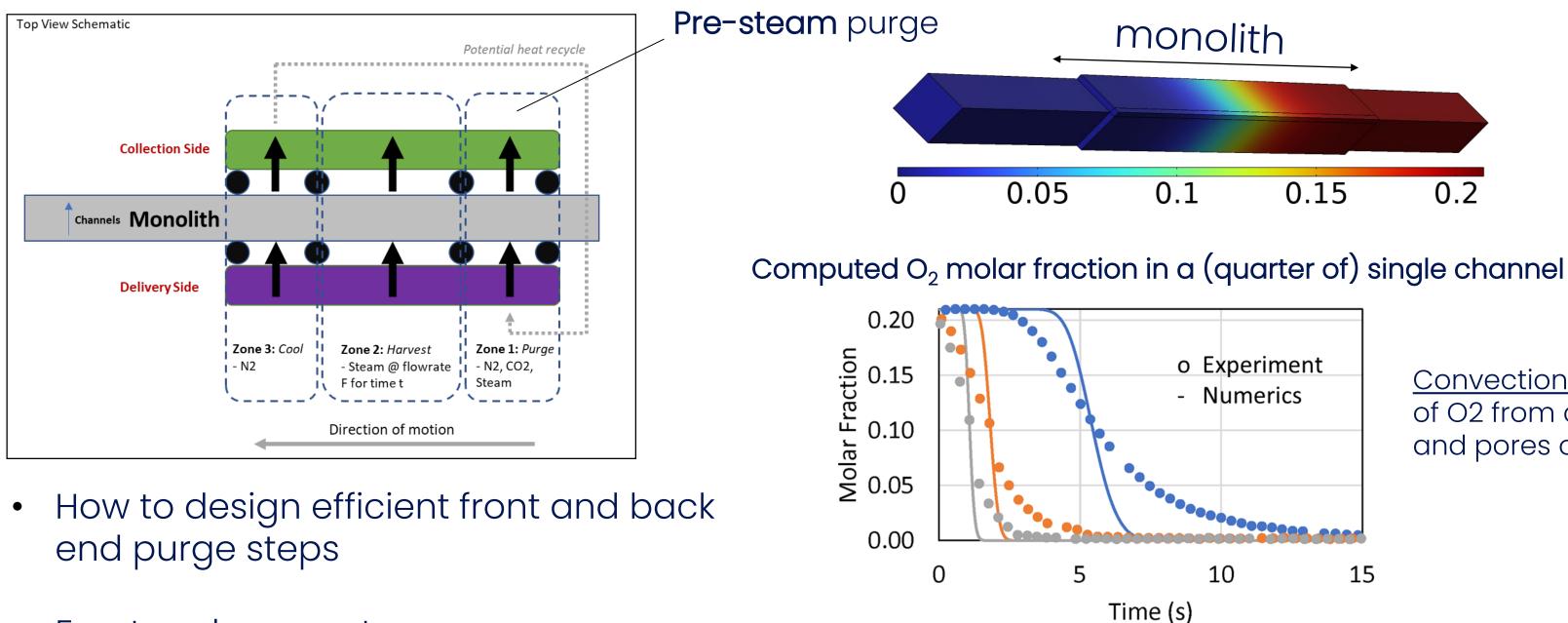
Bogies & Motor Assembly



FTU Carriage & Movement Assembly

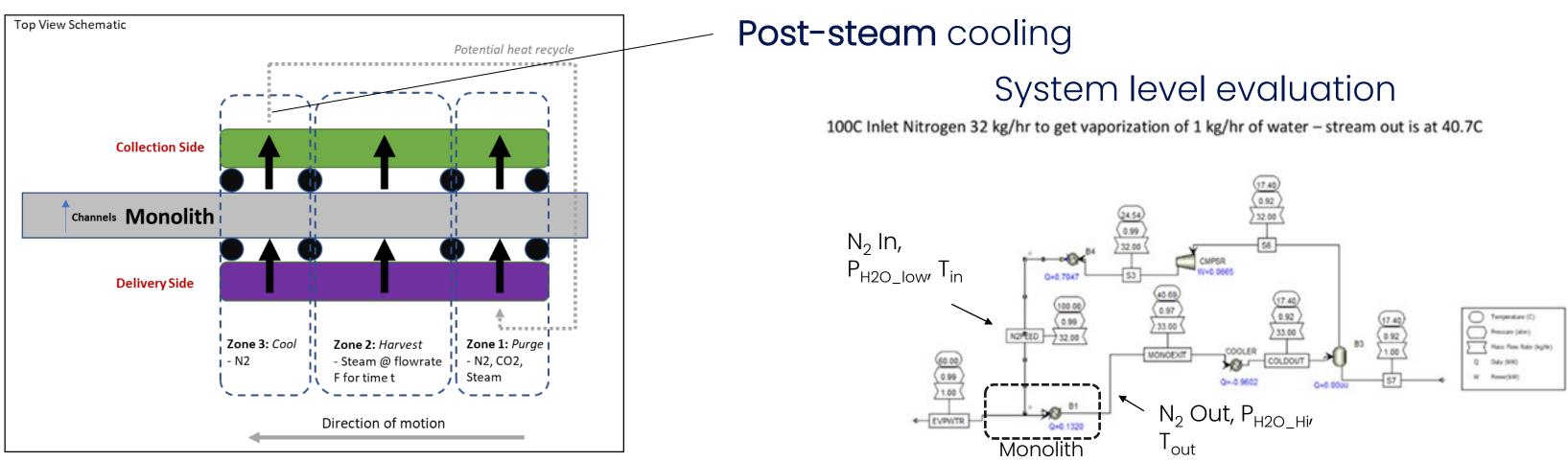


Final Mechanical Fabrication Phase In Progress



cDAC Field Test Prototype Block Flow

Pre-Steam Purge Dynamics: Modeling & Validation


- Front end purge step: remove oxygen • and increase CO2 purity

Rapid, efficient purging step possible – what are effects of monolith internal structure?

<u>Convection</u>/ diffusion of O2 from channels and pores of monolith

Post-Steam Cooling Dynamics: Modeling & Sizing

- How to design efficient front and back ulletend purge steps
- Back end step: monolith cooling prior ulletto introduction to airflow, H2O recovery G T

GLOBAL THERMOSTAT

- Thermal swing in N₂ loop to drive evaporative cooling is primary cost driver
- Capex/opex tradeoff with loop size, extent of cooling, H_2O recovery, monolith lifetime
- Site specific factors such as cooling water temperature become important

Lessons Learned

- Panel movement drive drop-in capable in cDAC embodiment
- Labyrinth seals, wiper seals are not adequate to maintain product purity and sorbent lifetime
- GT contactors are mechanically robust enough to utilize direct • contact rollers with high contact area to maximize effectiveness
- Optimizing evaporative cooling in inert flow is more complex than optimizing the air purge.

Plans for Future Testing & Development

- Finish construction and process commissioning of cDAC FTU •
- CDAC FTU operational campaign will generate data demonstrating: •
 - Reliability of dynamic sealing methodology
 - Effectiveness of purge and cooling steps
 - Overall impact on DAC TEA and LCA
- Assessment of the benefits of the cDAC paradigm against baseline • commercialized GT DAC platform
 - GT K-Series scale
 - GT M-Series scale

Summary

- Continuous process flows have the potential to reduce cost and • complexity of GT DAC process equipment
- Increased simplicity of internal and external heat, mass integration •
- Small hydraulic diameter of contactor channels enables rapid • inert purging of entrained air prior to CO2 recovery
- Speed and efficiency of inert gas evaporative cooldown highly tunable as a CAPEX/OPEX trade-off.
- Benefit over baseline GT commercial offerings TBD during • upcoming operational campaign

Project Team

Global Thermostat

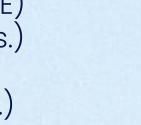
Eric Ping – Pl Miles Sakwa-Novak – Co-Pl Steph Didas - Project Coordinator Brianna Atherton Brodie Bourgeault Zach Foltz Jed Pruett

VADA **Bud Klepper**

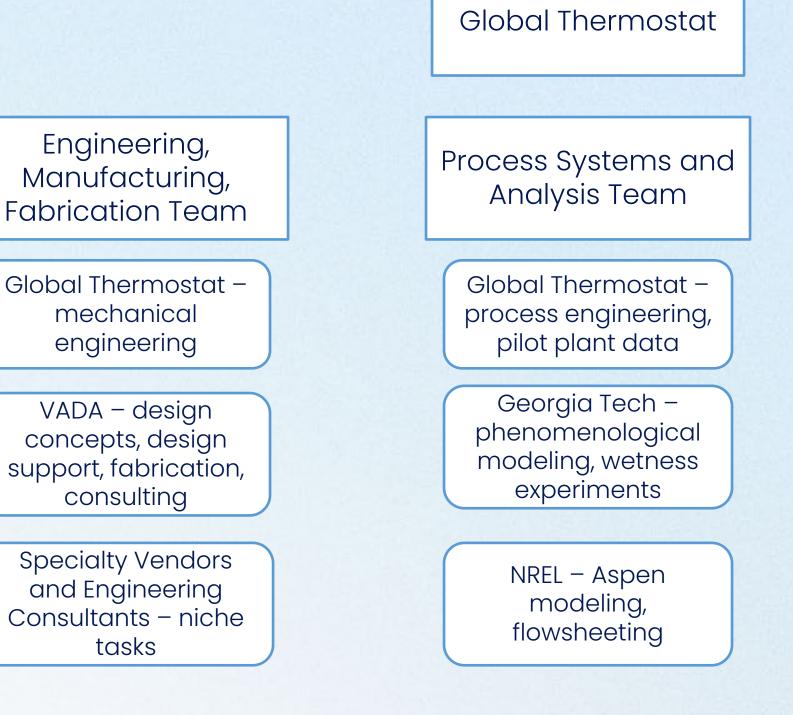
Zero Carbon Partners David Elenowitz

Georgia Institute of Technology

Roman Grigoriev (Phys.) Matthew Realff (ChBE) Michael Schatz (Phys.) Ari Glezer (MechE) Alex Warhover (Phys.) Marc Guasch (Phys.) Brendan McCluskey (Phys.)


National Renewable Energy Laboratory

Eric Tan


Thank You

Slides that are mandatory but not discussed

Organization Chart

Technology Maturation and Markets Team

Global Thermostat – management

ZCP - markets

25

		2001				00		_	2022			2024			2025			
Tasks, Deliverables, & Milestones	Tasks, Deliverables, & Milestones Assigned 2021 Resources 01 02 03 04		M	2022 Q1 Q2 Q3 Q4				2023			04	01 02 03 04			M A	020		
Task 1.0 - Project Management and Planning	10050040005								Ň					Ŭ.	Ŭ.			
D11 - Project Management Plan	MTM						T										T	_
D12-Technology Maturation Plan	MTM																	
D13 - EH&S Risk As sessment	MTM/Gobai											\neg						
D14 - Preliminary HAZOP	EMF																	
D15 - Host Site Approval	Giobal																	
Task 2.0 - Mechanical System Development																		
2.1 - Sealing and Movement System Concepts	EMF																	
M22-Basic Engineering of Mechanical System	EMF																	
M23 - Detailed Engineering of Mechanical System & RFO	EMF																	
Task 3.0 - Process Step Refinement and Development																		
3.1 - Base Channe1Mode1CFDDevelopment	PSA																	
3.2 - Experimental Model Validation	PSA																	
Task 4.0 - Base Plant Model & TEA/LCA Scale Framework																		
D4 1 - Plant-le vel As pen Mode i	NREL/Global																	
D4.2 - CAPEX Estimate and Scaling Analysis	VADA/Global																	
Task 5.0 - Basic Engineering of Plant Process Equipment																		
M 5.1 - Basic Engineering of Process Components	EMF																	
Go/No Go Decision (end of BP1)								×										
Task 6.0 - Process Refinement and Lifetime Implications																		
6.1 - Purge Step Development & Simulation	PSA																	
6.2 - Evaluation of Sorbent Lifetime	PSA																	
Task 7.0 - Detailed Engineering of Plant Process Equipment	EMF							_				_						
M 7.1 - Detailed Engineering of Process Components & RFO	EMF																	
Task 8.0 - Mechanical System Fabrication and Commissioning	3											Щ						
D& 1- Mechanical System Fabrication and Delivery	EMF																	
M82-Mechanical System Commissioning and Operation	EMF																	
Task 9.0 - Commethensive TEA & LCA and Scaling Analysis												Щ						
M9.1 - Basetine TEA & LCA	NREL/Global	<u> </u>																
9.2 - TEA & LCA Sensitivity Anatysis	NREL/Global																	
D9.3 - Scale-up vs. Scale-out Analysis	NREL/Global											_						
Task 10.0 - Fabrication and Integration of Plant Process Equip	ment											_						
Task 11.0 - Continuous DAC Process Commissioning												_			ШЦ			\square
M111 - Integrated Plant Check-out & Commissioning	Global						<u> </u>					\square						
D112 - Test Plan Development	Global					ļ											_	
Go/No Go Decision (end of BP2)																★		_
Task 12.0 - Continuous DAC Process Field Testing						 												
D121-Demonstration and testing of continuous DAC process	Global																	
M122 - Continuous testing period	Global																	
Task 13.0 - Refinement of Aspen Model	NREL/Global																	
Task 14.0 - Prescreening TEA/LCA	NREL/MTM																	