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CCSI? — Modeling, Optimization and Technical Risk Reduction

Multi-lab modeling initiative to support carbon capture technology development
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Process Modeling Support For DAC and Other CDR Technologies

Using advanced modeling tools to drive material development for optimal process performance
Advanced Modeling tools

» Develop and apply rigorous models to predict DAC performance and

cos - =2 ccsh

» Understand impacts of uncertainty on Key Performance Indicators ‘ R —
(KPIs)

» Guide collection of additional data to further reduce uncertainty and |DAES

reduce technical risk in scale-up el A=

. Advanced Energy Systems

» Refinement of models through optimal design of experiments
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Technology Scale-up: Data Collection and Modeling

Maximize the learning at each stage of technoloqy development
And inteqrate development stages

« Early stage R&D
« Screening concepts
* |dentify conditions to focus development
* Prioritize data collection & test conditions

° Pllot Scale Uncertainty
* Ensure the right data is collected
e Support scale-up design

* Demo scale

Process Systems Device Scale Models
Design, Optimization & Control Validated 3-D, CFD
Uncertainty
« Design the right process

« Support deployment with reduced risk

Lab & Pilot Scale

Experiments & Data

Uncertainty

Physical Properties
Kinetics




Complete CCSI Toolset Publically Available
« 2016 R&D 100 Award Winning Software Package

FOQUS - Framework for Optimization and
Quantification of Uncertainty and Surrogates

Full Process Modeling and Optimization

Framework -

* Fundamental characterization of material,
device and system

* Model library of solvent, solid-gas
contactors, and membranes

« Uncertainty quantification

* Optimization (under uncertainty) of process
configuration and operation (s.s. and
dynamic)

Optimal Design of Experiments - Improves
model while optimizing experimental data
generation

Surrogate Generation and ML Capabilities —
Generate reduced order models for difficult
multi-period optimizations, CFD optimizations
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The Carbon Capture Simulation Initiative (CC31) Toolset is a suite of computational models for carbon capture equipment and design
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Processes.

hitps:/fwniewsacceleratecarboncapture. org/

El Repositories 30 People 26

Finned repositories

= FOQUs

FOGUE: Framewark for Cptimization and
Cluantification of Uncertainty and Surrogates

@Fython w1 ¥a

= Ony-CombustionModels_bundle

The Oxy-Combustion kodels package consists of
two primary components: & detailed boiler model
and a suite of equation-hased models of the other
components of a complete oxycombustion power
generati...

@ Makefile

Teams 6

-Toolset

P9 C @ Y EING D

Pull requests Issues Marketplace Explore

Projects 1 Settings

= ProcessModels_bundle

& suite of process models implemented in both
Aspen Custom Modeler and gPROMSE hodel

Euilder, as well as models implemented within
Aspen Plus and Aspen Plus Dynamics.

@ takefile 1

= APCFramework

Unified framewaork in MATLAE for application and
testing of advanced control algorithms towards
efficient process operation and control

@ tiatlah

cosi-suppot@acceleratecarboncapture.o...

Customize pinned repositories

= CFDModels_bundle

High fidelity device scale Computational Fluid
Dynamics (CFDY models

@ Makefile

= iRevealLite

Automated reduced order model generation far
improved computational time
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Sorbent Models

First principal solid-gas contactor models

; : ; ; Development of Novel Property Models
le_rary Of fIrSt p”ﬂCIple (Two-step Isotherm of tetraamine-appended
solid —gas contactors ) MOEY)

— Fixed beds, moving beds,
bubbling fluidized beds,
rotating packed beds, etc.

— Support numerous
technologies in the capture
and DAC space
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Developing Detailed, Predictive Models of Solvent-Based Capture Processes

Pilot/

Commercial “

Scale Data

Lab Scale «
Data

Steady-State and Dynamic

Process Model

f! Properties Package

Chemistry Model

~/

Thermodynamic Transport

Models Models
\o——
- Z CCS|
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Process Sub-Models

]
[ 2

WWC/Bench/Pilot

Scale Data

Kinetic model

Detailed, Rigorous, Modeling

Hydrodynamic
Models

Mass Transfer
Models

Integration of multi-scale

data
Inclusion of uncertainty at
several scales
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Uncertainty Quantification (UQ)

Quantifying risk for scale-up

Tools to develop understanding of impacts of uncertain models and data gaps

Provides a “criteria” for experimental testing

Can provide insight into “value” data collection in almost real-time

MATERIAL

Property/Process Sub-models

Initial Parameter
Range

Univariate Posterior Distr.

Initial Value

Bayesian Inference to update parameters

Bivariate Posterior Distr.
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Uncertainty Quantification Bayesian Inference Example: VLE Models

VLE Data/Model Comparison at 40°C

Deterministic sub-model
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Best initial guess of
parameter set

ian inference>
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Sequential Design of Experiments

« Develop systematic approach to conducting pilot plant testing, regardless of
scale, process configuration, technology type, etc.

« Ensure right data is collected
« Maximize value of data collected

Schematic of Sequential Design of Experiments

= Prlort Toe Pilot Plant Operation Exnerimantal
arameter : : es ——— Xperimenta
Distributions Process Test Selection with Plan Data

Model Optimality Criteria

Posterior Parameter
Distributions

S
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Three Beds with Intercooling Cases

NCCC Model Improvement after SDoE

100+

90

701

60}

CO2 Capture Percentage (Model)

T

50 60

70 80 30

CO2 Capture Percentage (Data)

100

60% of runs
clustered here

® 2014 Campaign
W 2017 Campaign (1st Round)
B 2017 Campaign (2nd Round)

2014 Campaign (Before SDoE)

» Conventional test plan caused “clustering
* Not ideal for complete understanding

» Used data to refine model

Wait 3 years....

2017 Campaign (Using SDoE)

* Much more distributed output

* Much more complete understanding

 In manner of weeks, further reduced
uncertainty in capture rate by 60%
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TCM Model Improvement after SDoE

Update in Parameter Distributions for Absorber

Packing

Probability Density
3
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Mass transfer and interfacial area parameters
are packing-dependent, and therefore are
assigned uniform prior distributions over wide
ranges, indicating assumption of relatively
large uncertainty before collection of process
data.

Bayesian inference, through process data
collected using SDoE, results in refined
estimates of parameters, and thus reduction
in uncertainty in process model and risk
associated with scale-up

Prior
= Posterior 1
Posterior 2

Reduction in CO, Capture Percentage
Prediction Accuracy

Width of 95% Confidence Interval
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.

100

Candidate Set No.

Candidate set includes variation in:

- Solvent Circulation Rate
- Flue Gas flowrate and CO, concentration
Reboiler steam flowrate

Prior Cl Width:
(10.5*1.5%

Posterior Cl Width:
(4.4%0.4)%

Average reduction in
uncertainty: 58.0 ¥ 4.7%
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Science Based Design of Experiments

DesignOfExperiment

‘ PYOMOQO
v~ DOE

« Utilize science based models

 Better design experimental devices and
measurements to ensure identifiability of the
process

« Extendable to dynamic experimental designs

https://pyomo.readthedocs.io/en/stable/contributed packa

ges/doe/doe.html
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DAC Systems — Integrated Approach

Historical Time Series Data Process Model

* Performance of DAC
process will likely vary via
seasons and changing
temperatures and humidities
throughout the day

Temperatuer and Humidity Data
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Multi-period Optimizations and NPV Analysis: FLExible Carbon

Sponsor: ARPA-E
Ext. Partners:

LA Los Angeles
Susteon RTINS [socaces Dwemeims

Capture and Storage (FLECCS)

WestVirginiaUniversity

Goolty, et. al., Applied Energy, 2023

Process LMP Signals

Input from ARPA-E
+ | ocational Marginal Price (LMP)
signal (in $/MWh)

LMP S/
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Identify representative days

Develop Rigorous and Reduced-order (surrogate) Process Models
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Example Scenario: $150/ton CO, tax
Build Capture System?

Capture System Must Be Built

Build Capture System if Capex/Opex
Reduced by 20%"?

A

water

Formulate and Solve Multi-period Optimization Problem

Result: Optimal solution maximizing the Net

Present Value (NPV) o " |

= Optimal design of the capture system s IDAES M

= Optimal power schedule * o Acearce Eneray Syslers N

+ Detailed cash flows e
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CCSI? Support For NETL DAC Technology

Support analysis of NETL developed PIM-1-AO-TAEA
sorbent

Help guide data collection to properly inform process scale
Work with high fidelity (CFD) modeling teams to inform
mass transfer, hydrodynamics submodels

Estimate performance with varying regeneration methods
(temperature swing, vacuum assisted vacuum swing, etc.)
Perform cost analysis (12/31/23)

Characterize performance under varying air conditions
(3/31/23)

Long term goal — support testing at NETL DAC center

CO, Cyclic Working Capacity Analysis

PIM-1-AO-TAEA: CO, Purity = 100% PIM-1-AO-TAEA: CO,, Purity = 50%
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Cooling
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Sorbent data collection

Property Model

Process Model



Optimization of Integrated Capture Process: Achieve Net-zero Emissions for
NGCC Power Plant

o —————— \
Flue gas Exhaustgas ! <hi I Clean gas
NGCC ] =( PCC (solvent) ] ’ Polishing Step : —
J L J i (sorbent) |
e — 4

f
Power/Heat A, ;

Cases examined:
1. Integrated NGCC and TSA: Net-zero achieved via polishing step

2. NGCC + Electric Boiler (steam + power for TSA) + TSA: Net-zero achieved via polishing step. Electric boiler added to
provide steam and power for DAC system.

3. Integrated NGCC and DAC: DAC meets net-zero requirement

4. NGCC + Electric Boiler (steam + power for DAC) + DAC: DAC meets net-zero requirement. Electric boiler added to provide
steam and power for DAC system
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Optimization of Integrated Capture Process: Achieve Net-zero Emissions for
NGCC Power Plant

e e e e \
Flue gas Exhaust gas < hi I Clean gas
NGCC ] : =( PCC (solvent) ] : ’ Polishing Step : —
J L J i (sorbent) |
| — r R ——
Power/Heat A, ‘:
U N
I 3
—» Electric Boiler :
I I
Power Grid ~ “mmmmm———- u

Cases examined:
1. Integrated NGCC and TSA: Net-zero achieved via polishing step

2. NGCC + Electric Boiler (steam + power for TSA) + TSA: Net-zero achieved via polishing step. Electric boiler added to
provide steam and power for DAC system.

3. Integrated NGCC and DAC: DAC meets net-zero requirement

4. NGCC + Electric Boiler (steam + power for DAC) + DAC: DAC meets net-zero requirement. Electric boiler added to provide
steam and power for DAC system
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Optimization of Integrated Capture Process: Achieve Net-zero Emissions for
NGCC Power Plant

] Flue gas ( ] Exhaust gas
NGCC » PCC (solvent) >

) { )

Power/Heagé ____________________________ P
1

S S

Ambient air: I Clean air
» DAC (sorbent) : >
I\ __________ /I

Cases examined:
1. Integrated NGCC and TSA: Net-zero achieved via polishing step

2. NGCC + Electric Boiler (steam + power for TSA) + TSA: Net-zero achieved via polishing step. Electric boiler added to
provide steam and power for DAC system.

3. Integrated NGCC and DAC: DAC meets net-zero requirement

4. NGCC + Electric Boiler (steam + power for DAC) + DAC: DAC meets net-zero requirement. Electric boiler added to provide
steam and power for DAC system
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Optimization of Integrated Capture Process: Achieve Net-zero Emissions for
NGCC Power Plant

] Flue gas ( ] Exhaust gas
NGCC J 1 PCC (solvent) J >
Power/Heat A, 1
I
f----l-----\ f----J ----- ~
: o Ambient air} ! Clean air
—» Electric Boiler | » DAC (sorbent) | -
1 ! | ]
Power Grid  “T=—====—= S ’

Cases examined:
1. Integrated NGCC and TSA: Net-zero achieved via polishing step

2. NGCC + Electric Boiler (steam + power for TSA) + TSA: Net-zero achieved via polishing step. Electric boiler added to
provide steam and power for DAC system.

3. Integrated NGCC and DAC: DAC meets net-zero requirement

4. NGCC + Electric Boiler (steam + power for DAC) + DAC: DAC meets net-zero requirement. Electric boiler added to
provide steam and power for DAC system

111111111111111111111111
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Summary of Results (Overall Cost of Capture PCC+TSA)

0D Equilibrium Model

— FG polishing step — Integrated NGCC
& e-boiler (90%, 95%, and 97%)

— DAC - Integrated NGCC & e-boiler
(90%, 95%, and 97%)

Material used in TSA system
MgMOF74, and assumed cost of
$10/Kg

Overall cost of capture = PCC
capture cost + TSA capture cost

All cases are “net-negative” at
plant level

FG Retrofit NGCC (polishing step)
with 97% capture in PCC cheapest

nnnnnnnnnnnnnnnnnnnnnnn
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Modeling and Analysis Capabilities

Tools and process models to predict,
optimize, and minimize risk in the scale-up

f technoloqi UQ and
° e NOI0gIes Process-level TEA Pa_rar_netgr
Optimization Optimization

S

ccsl’
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High-Fidelity, Multi-Scale
Modeling

Robust Optimization
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Foundational Capabilities . 7:::: }5? 't-:.,‘. N \ -/,
«  High-Fidelity Modeling (sorbents, solvents, membranes) : S peaet ¥ oo
- Optimal Design of Experiments v e e |
« Steady-State and Dynamic Process Optimization i e N o]
«  Electricity Grid Modeling / Expansion Planning - N . ]—‘ i A
«  Multi-Scale Modeling and Optimization I S e T

(Materials/Process/Grid)
* Uncertainty Quantification
* Robust Optimization (i.e., Design Under Uncertainty)
* Machine Learning/AI

Y
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For more information
https://www.acceleratecarboncapture.orq/

benjamin.omell@netl.doe.gov
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