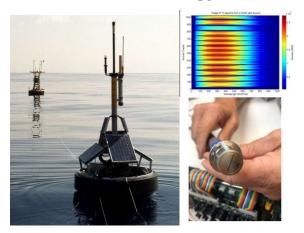
Metrology for CDR and CCUS

Pam Chu
CDR/CCUS and Climate Program Coordinator
pamela.chu@nist.gov


DOE-NETL Aug 29, 2023

Mission


Promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Technology

Develop critical measurement science to accelerate innovation, scalability, & reduce uncertainties

Benchmark Measurements Data & Materials

Facilitate rigor and reproducibility across measurement ecosystems

Documentary Standards

Support industry and Federal use of voluntary consensus standards

NIST Prepares Industry for the Future

NST

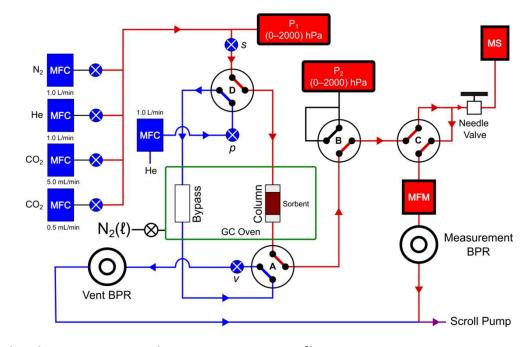
Climate Measurements and Monitoring

- Traceability of GHG measurements
- GHG measurement technology
- Ensuring climate data quality and standardization

Decarbonization of the Economy

- Built environment
- Energy infrastructure
- Carbon Dioxide
 Removal (CDR),
 Carbon Capture Use
 and Storage (CCUS)
- Manufacturing

Adaptation and Resilience


- Disaster and failure studies
- Wildland-Urban Interface fires
- Community resilience
- Connected systems resilience

Life Cycle Analysis, Carbon Accounting

Dynamic Column Breakthrough Measurements N

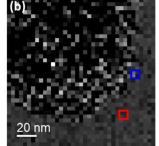
Designed and built new instrument specifically for DAC Conditions

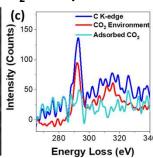
- Minimize dispersion and uncertainties
- Fully evaluated uncertainties, u_r=0.05
- CO₂ uptake of 13X zeolite
- Compared to adsorption isotherms
- Identifying candidate benchmark materials

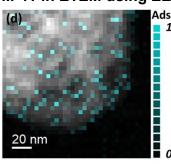
MFC: mass flow controller; BPR: backpressure regulator; MFM: mass flow meter; P_i: manometer

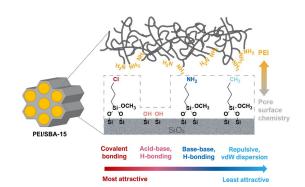
McGivern, W.S., Nguyen, H.G., Manion, J. Improved Apparatus for Dynamic Column-Breakthrough Measurements Relevant to Direct Air Capture of CO2 *Ind. Eng. Chem. Res.* 2023, published online 16 May 2023 https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c04050

Benchmark Material Characterization




Examine:


- CO2 locations & binding
- Diffusion, kinetics
- Structures & microstructures
- Local adsorption potential and vibrations
- Effects of water and competitive binding
- Effects of trace gases and particulates


- Environmental Transmission Electron Microscopy (ETEM)
- Scanning Electron Microscopy
- Neutron and X-ray Scattering
- Tandem Polarization Modulated IR Reflection Absorption Spectroscopy (PMIRRAS with QCM)
- Diffuse Reflectance Spectroscopy (DRIFTS)
- Molecular Simulations

In situ observation of CO₂ adsorption on MCM-41 in ETEM using EELS

Locally confined PEI exhibit slower motions

Moon et al., JACS 144, 26, 116644 (2022)

Carbon Sequestration in Building Materials NUST

Accelerate adoption of innovative low-carbon building materials Cements & Concretes

Convening Low Carbon Cement and Concrete Consortium

- 38 member organizations industry, academics, other agencies
- Coordinate with voluntary consensus standards organizations, e.g. ASTM
- Facilitate standards development, interlaboratory comparisons and standard test materials
- Coordinate with other agencies EOP/CEQ, DOE-LPO, EPA

Low Carbon Cements and Concretes Consortium | NIST

Foundational Metrology

- Trusted measurements, standards, and methods provide
 - Validation
 - Metrological Traceability
 - Quantification of Measurement Uncertainty
- Enables measurement <u>comparability across space</u> <u>and time</u>

Trusted measurements, metrology, data, & standards

Metrological traceability, quantification of measurement uncertainty