Amine Infused ePTFE/SiO₂ Laminate Structured Sorbents as an Advanced Direct Air Capture System FE0032278

Matthew J. Realff

School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

matthew.realff@chbe.gatech.edu

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023 Bench-Scale Research, 4:10-4:25 Monday August 28th

Project Overview

• Funding:

- Federal share: \$1,326,312
- Cost share: \$332,105
- Overall Project Performance Dates
 - 9/1/2023 7/31/2025
- Project Participants
 - Georgia Institute of Technology (Jones, Christopher; Realff, Matthew)
 - W.L.Gore & Associates Inc. (Dell, Regina; Beusche, Uwe)

DAC by Solid-supported Amine Sorbents

Free Standing Solid-supported Amine Sorbents

□ Advantages of polymeric inorganic/organic hybrid sorbents

- High volume-loading of solid adsorbents (silica particles)
- Macroporous polymer bicontinuous pore network for rapid CO₂ mass transport
- Tunable material properties : thermally stable, tunable porosity & hydrophobic

Changes in CO₂ Capacity and Amine Efficiency

Amine Efficiency $\left(\frac{mmol CO_2}{mmol N}\right) = \frac{moles of captured CO_2}{moles of amine sites on sorbent}$

- PEI loading \propto total number of amine sites $\propto CO_2$ capacity of PEI-ePTFE/silica.
- Low PEI loading: interaction of amine sites (-NH₂) with the silica wall (- OH).
- High PEI loading: amine sites with high diffusion limitation.

Effect of Moisture on CO₂ Sorption Behavior

- 37% increase in CO₂ capacity using pre-saturated MPEI-ePTFE/silica sorbent.
- \rightarrow Release of accessible amine sites allowing more carbamate ions to form and/or bicarbonate.
- Consistent CO₂ capacities under dry conditions were maintained after humid cycles.

Regeneration

H₂O Adsorption and Thermal Energy Consumption

Relative Pressure (p/p°)

* Equivalent loading of PEI was loaded onto silica powder sorbent (PEI-silica) for comparison

- Water adsorption is by hydrophilic PEI and silica.
- Hydrophobic polymer domain does not sorb water
- \rightarrow Less water uptake per unit mass of sorbent material
- \rightarrow Low molar ratio of water to CO₂, q_{H2O}/q_{CO2}

CO_2 and H_2O Capacities of sorbent materials from DAC Literature

Sorbent Material	Humid CO ₂ capacity	H ₂ O capacity	q _{н20} /q _{CO2}	Humidity Condition	Reference	
	(mmol CO ₂ /g _{sorbent})	(mmol H ₂ O/g _{sorbent})				Y. Min et al. ACS Appl. Mater. Interf.
PEI-ePTFE/silica	1.5	4.7	3.13	T = 35 °C, 50 %RH	This work	2022 , 14, 40992.
APDES-NFC-FD	0.50	3.0	6.0	T = 30 °C, 60 %RH	1	
Lewatit® VP OC 1065	1.33	7.23	5.44	T = 35 °C, 60 %RH	2	
PEI-NFC	1.22	21	17.2	T = 25 °C, 80 %RH	3	
Amine functionalized resin	0.65	2.66	4.1	T = 35 °C, 36 %RH	4	
Ph-3-ED/SBA-15	1.45	4.69	3.23	T = 35 °C, 30 %RH	5	
APS-SBA15	0.52	2.09	4.02	T = 30 °C, 12 %RH	6	11

Steam-assisted Temperature Vacuum Swing Adsorption (S-TVSA)

gPROMS[™] simulation model

Regeneration

Total thermal energy requirement estimation (275.5 kJ/mol CO₂) PEI-ePTFE/silica

- Water adsorbed during DAC increases thermal energy during regeneration.
- Energetically, high CO₂ and low water capacity is preferred.
- Incorporation of hydrophobic polymer can lower the total water uptake, and lower energy burden.

Summary

- 1. Hierarchical contactor geometry and materials require careful tuning to maximize productivity and minimize energy use.
 - a. PEI loading in silica particles
 - b. Silica loading in polymer substrate
 - c. Polymer substrate in contactor volume
 - i. Material thickness
 - ii. Material spacing
 - iii. Contactor dimensions
- 2. Water management can be a key issue
 - a. Water adsorption/desorption across cycle drives energy use for thermal regeneration strategies
 - b. Heat recovery from water management