AIR2CO2 Contactor: <u>A</u>dvanced <u>Integrated</u> <u>Reticular Sorbent-Coated System to</u> Capture <u>CO</u>₂ using an Additively-<u>Manufactured Contactor</u> <u>DEFE0032126</u>

> Dr. David Moore Carbon Capture Technology Leader GE Vernova Advanced Research

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

Project Overview

- \$2.0 MM program (\$1.5 MM DOE + \$0.5 MM GE cost share)
- 30-month program: 10/1/2021 to 3/30/2024
 - BP1: 10/1/2021-5/31/2023
 - BP2: 6/1/2023-3/30/2024
- **Project Participants:**
- GE Research
- University of California, Berkeley (BP1 only)
- University of South Alabama (BP1 only)
- **Overall Project Objective:**

Demonstrate feasibility (TRL3) of a bench-scale, sorbent-integrated system that integrates a low pressure drop, additively-manufactured contactor and an advanced sorbent to capture and release atmospheric CO_2 .

Technology Background

AIR2CO2 Contactor relies on integration of three key innovations:

- 1. Model-directed design and fabrication of an additively-manufactured, two-channel trifurcating air contactor that exhibits low pressure drop and high surface area-to-weight ratios,
- 2. Modular, scalable, indirect-heated system that enables alternating adsorption and desorption of CO_2 , and
- 3. Tailored reticular sorbent-binder composite that exhibits high capacities, rapid sorption kinetics, and robust cycle performance at low CO₂ concentrations.

AIR2CO2 Contactor Technical Approach & Key Milestones

AIR2CO2 Contactor System Integration & Success Criteria

Success Criteria:	Parameters	BP1 Target	Project Target
	CO ₂ Capture Efficiency, %	50	70
	Space Velocity, hr ⁻¹	50,000	150,000
	Pressure Drop, Pa	500	150
	Capacity Fade/Cycle, %/cycle	0.005	0.0001
	Steam Duty, kJ/mol CO ₂	275	172
	Overall Volumetric Productivity (gmol _{CO2} /(hr* V ₁)	1	2

Project Risks & Mitigation Strategy

Perceived Risk	Mitigation/Response Strategy			
Technical/Scope Risks:				
Insufficient sorbent capacity, slow CO ₂ capture/release kinetics & thermal/hydrolytic instability	AIR2CO2 Contactor is sorbent agnostic 1) optimize MOF-808-Lys synthesis, contactor surface area & coating thickness to maximize capacity, kinetics & stability; 2) employ alternative MOF materials.			
Sorbent and contactor scalability	Evaluate GE & external sorbent materials & engage external supply chain. Explore alternative contactor geometries and materials of construction, leveraging GE experience in fluid contactors.			
System integration challenges: 1) Lack of composite uniformity; 2) Heat management & sorption kinetics/mass transport mismatch lead to high system energetics	Iterate on 1) coating processes, MOF-binder formulations and contactor parameters to optimize adhesion, thickness, and thermal transfer & 2) system modeling and experimental validation with systematic scaling and demonstration to enable robust process design and reduce operational risk			
Suboptimal AIR2CO2 contactor design results in large pressure drops & high steam duty	Leverage GE Additive and GE Aviation heat exchanger expertise to iteratively balance surface area, wall thickness and hydraulic diameters			
Management, Planning, and Oversight Risks:				
Ineffective selection of sorbent materials, contactor designs & coating processes	Expand TRL3 material selection options & leverage Six Sigma statistical tools and detailed success criteria to downselect and advance technologies			
EH&S Risks:				
Potential for sorbent decomposition results in downstream extractables/contaminants	Perform sorbent life cycle studies and analyze possible by-products of side reactions			
External Factor Risks:				
Supply chain challenges hinders partnering & supply chain	Proactively work with vendors and sourcing to ensure timely delivery			

Sorbent System Testing

Sorbent & Film Properties

Chemical & Structural Analysis

Benchtop XRD System

Surface area analysis

Sorption Properties: Thermodynamics & Kinetics

Structure-property-performance

Dynamic System Performance

<u>CAT-1</u>

- $T_{ads} = 5-30^{\circ}C;$
- $T_{des} = 100-120^{\circ}C$
- 1-30 SLPM
- <100-1000 mbar
- Up to 80%RH achievable

DAC Prototype Rig

- $T_{ads} = 5-30^{\circ}C;$
- $T_{des} = 100-120^{\circ}C$
- 20-1200 SLPM
- 25-1000 mbar
- Up to 80%RH achievable
- Fundamental mass transfer understanding informs coated contactor & system process and design
- Component characterization & module testing
- Input data to develop and refine TEA models

System testing and validation

Dynamic Sorbent System Testing

Kinetics & mass transfer understanding enables robust process design and reduces operational risk

AIR2CO2 Contactor System Geometry Modeling

AIR2CO2 Contactor Additive Design & Fabrication

Powder removed from parts to enable two-channel flow

Contactor designs finalized and fabricated for BP1 activities

Additive Contactor Design, Fabrication & Testing

Contactor design & models optimized to achieve pressure drop targets

Sorbent (GE115) Integration into AIR2CO2 Contactor System

AIR2CO2 Additive Contactor

Fin-in-Tube Contactor

Uniform coatings achieved that retain >80% of the native sorbent capacities

GE-115 Model Fit & Cycling Performance

CO₂ Adsorption Breakthrough and Model Fit

DM 20 SU

Cycling CO₂ Capacities

Adsorption: DAC, 25 °C, 50% RH, 10 SLPM Desorption: 120 °C, 1 SLPM N₂ sweep

20 SLPM feed gas used for continued cycling (Cycles 2-15)

Reasonable model fit. Gen 2 GE sorbents with improved life will be employed.

AIR2CO2 Contactor: Summary of Coated Parts Testing

Contactor	GE-115 Capacity (mol/kg)	Coating Thickness (mm)	K _i (1/s)	Volumetric Productivity (mol _{CO2} /(L*hr))		Gravimetric Productivity (kg _{CO2} /(kg _s *hr))		Capture Efficiency (%)	
				15 min	30 min	15 min	30 min	15 min	30 min
Additive	2.71	0.16	2.76x10 ⁻⁴	0.44	0.40	0.054	0.049	67.5	61.7
Fin and Tube	2.41	0.13	6.5x10 ⁻⁴	0.86	0.70	0.13	0.11	59.6	48.3

Adsorption: DAC, 25 °C, 50% RH, 10 SLPM **Desorption:** 120 °C, 1 SLPM N₂ sweep

How quickly
$$CO_2$$

saturates the sorbent
$$R_{AC} \equiv \frac{pL\rho_s T_s N_0 K_i}{A_f V C_0} = \frac{Adsorption Rate}{Convection Rate}$$

To maximize productivity...use best material (capacity, kinetics) and operate in adsorption limit $(\downarrow R_{AC})$

BP1 productivity & efficiency targets met with fin and tube coated contactors

Progress Against Success Criteria & Next Steps

GE-115 Additive Contactor Performance

	Parameters	Parameters Current - GE-115		Project Target	
	CO2 Capture Efficiency %	67.5 ¹	50	70	
	Space Velocity, Hr-1	80,043	50,000	150,000	
AIR2CO2 Contactor Alpha-	Pressure Drop, Pa	235 ²	500	150	
	Capacity Fade/Cycle %/cycle	3.52	0.005	0.0001	
Prototype Steam Duty	Steam Duty, kJ/mol CO2	1762	275	172	
600	Overall Volumetric Productivity (gmol CO2/ hr V(I))	0.44 ¹	1	2	
Water Latent	Overall Gravimetric Productivity (g-CO2/ hr g-Sorbent)	0.056 ¹	-	-	
270 Costing Sensible	¹ Efficiency and productivity values taken at 15 minutes				
200 Contactor Sensible	² Pressure drop extrapolated to 1 tonne-CO ₂ /day system with 0.3 m length in flow direction				

1600

1400

- Employ Gen 2 GE sorbents with improved Ο chemical and thermal stability
- Maximize coating capacity, kinetics & Ο thickness
- Effectively manage water Ο
- Minimize contactor thermal mass 0

Driving towards BP2 targets through multi-parameter understanding & optimization

Sorbent & Film Fabrication

GE Gen 2 MOF Scale-up

>300 grams of GE MOF scaled up

Adherent sorbent films with promising capacities

Sorbent Film Performance

Successfully scaled MOF sorbents and demonstrated robust, high-performance films

Next Generation Additive Contactor Design & Fabrication

Leak & Performance Testing

Leak Testing	Туре	Purpose	Hydraulic Diameter (mm)	Wall Thickness (mm)
	Leak Testing	Determine minimum wall thickness without leaks	10	0.50 - FAILED
				0.75 - PASSED
				1.0 - PASSED
				1.2 - PASSED
	Performance Testing	Measure adsorption metrics in CAT-1 rig	10	1.2
- de la company de	Leak test performed with part submerged in water with nitrogen gas applied at 15 psi.			

Contactor wall thickness of 0.75 mm chosen for additive contactor design

Plans for future testing/development/ commercialization

- a. AIR2CO2 Contactor: Alternating adsorption-desorption benchscale proof-of-concept testing of coated, additively-printed parts; techno-economics; up to 1 kg CO_2 /day demo
- b. Post-AIR2CO2 Contactor: 10 tonne CO_2 /year demonstration
- c. Scale-up potential: Demonstration scale with full size contactor. Supply chain development – sorbent scale-up, contactor fabrication, sorbentbinder formulation & coating

AIR2CO2 Contactor Summary

Sorbent & System Performance Achieved:

- 1. Sorbent-agnostic contactor design achieved low pressure drop targets
- 2. Coating formulations demonstrate >80% of native sorbent sorption performance and excellent adhesion to additively-printed contactors
- 3. Modeling and experimental validation shown across length scales... kinetics & mass transfer understanding enables robust AIR2CO2 Contactor process design, reduces operational risk and informs techno-economic analyses (capital and operating models)

Significant accomplishments & future activities:

- Climate Action @ GE (CAGE) lab-scale dynamic testing and Prototype Development Lab (PDL) established. Modular 1 kg CO₂/day system designed and constructed.
- Next generation sorbent architectures and advanced coating formulations enable high capacity, robust coated coupons and contactors
- ✓ Additively-manufactured, two-channel trifurcating air contactor geometry with low thermal mass determined through iterative model-directed design, fabrication & testing
- Indirect-heated AIR2CO2 Contactor engineered system design finalized and alpha-prototype demonstrated
- Modular, scalable, sorbent-coated AIR2CO2 Contactor designed, fabricated, and tested on 1 kg CO₂/day engineered prototype system

Acknowledgments

• Financial and Programmatic Support

Andrew O'Palko Andy Aurelio Nicole Shamitko-Klingensmith Dan Hancu Andrew Jones

Jeremee Wetherby Sherif Mohamed

• AIR2CO2 Contactor Technical Team

GE VERNOVA

David Moore William Gerstler Mark Doherty Dana Capitano Alex Antonio Bin Xu Michael Radetic Jenny Ardelean Travis O'Neil Donald Whisenhunt Prof. Omar Yaghi Oscar Chen Haozhe Li Chuanshuai Li

Berkelev

Prof. T. Grant Glover Thomas Lassiter

Appendix

Organization Chart

<u>GE Research</u> – contactor design & fabrication, coating development, system modelling, fabrication & performance testing

Dr. David Moore, PI

Dr. Bin Xu

Dr. William Gerstler

Dr. Michael Radetic

Dr. Mark Doherty

Dr. Jenny Ardelean

Dr. Donald Whisenhunt

Ms. Dana Capitano

Dr. Alex Antonio

<u>UC Berkeley</u> – sorbent development & characterization, powder performance testing

Prof. Omar Yaghi Mr. Oscar Chen Mr. Haozhe Li Dr. Chuanshuai Li Co-PI

Mr. Travis O'Neil

<u>Univ. S. Alabama</u> – system modelling, CO₂ sorption kinetics measurements

Prof. T. Grant Glover Co-PI

Mr. Thomas 21 Lassiter

Gantt Chart

