Bench Scale Development of a Novel Direct Air Capture Technology Using High-Capacity Structured Sorbents DE-FE0032118

Raghubir Gupta and Andrew Tong Susteon Inc.

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

Project Overview

Total Funding: \$1,903,876

DOE Funding: \$1,500,000

Cost Share: \$403,876

Overall Project Performance Dates:

BP1: 10/01/2021 - 09/30/2022

BP2: 10/01/2022 - 09/30/2023

Project Participants:

Susteon Inc. (Prime)

Columbia University (Professor Robert Farrauto)

Sustaera

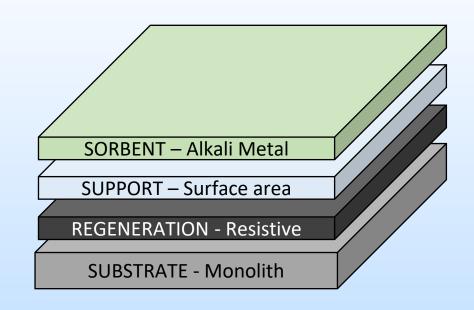
Cormetech

TotalEnergies

SoCalGas

DOE Project Manager: Mr. Zachary Roberts

Project Objectives


The overall objective of the project is to lower the cost of DAC through development of a structured material system which will be regenerated with low-carbon electricity (TRL 3 to TRL 4).

Technical Objectives

- Increase CO₂ capacity and absorption rate to lower capital costs
- Regenerate directly with electricity
- Develop a washcoating synthesis process for structured supports for low-pressure drop
- Design and build a 1 kg/day CO₂ bench-scale unit
- Perform parametric and long-term testing to obtain engineering data needed for a pilot system design for next step of technology development
- Develop a process model to accurately represent the DAC process
- Perform and refine a technoeconomic assessment (TEA) to evaluate the commercial potential of an Nth of a kind large-scale DAC facility

Structured Material Assembly (SMA) Concept

- Adsorption with a sorbent is different with 400 ppmv CO₂ in air compared to high concentrations of CO₂ in point sources.
- Humidity in air plays a critical role in CO₂ capture from air.
- Our SMA integrates the sorbent, regeneration method, and substrate into an optimized form, which;
 - Increases productivity by enabling fast CO₂ adsorption rate and fast regeneration
 - Lowers the energy utilization by reducing pressure drop during adsorption and energy losses during desorption
 - Powered by low-carbon electricity for maximum net removal efficiency (no steam needed)

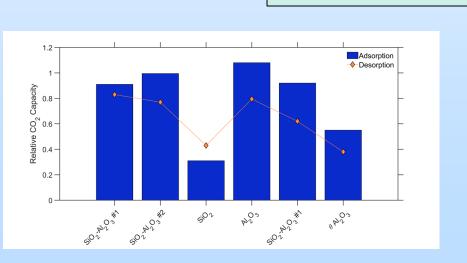
Technical Approach

- Optimize structured material system: Promoted Na₂CO₃ on alumina support with the key objectives of (1) maximizing CO₂ capture capacity (2) maximizing CO₂ capture kinetics (3) maintain high working capacity between cycles (4) good adsorbent stability (5) low desorption energy
- Support the sorbent on a low-pressure structured support such as monoliths to minimize the energy consumption due to pressure drop with a target of <250 kWh/ton of CO₂ captured. Optimize the coating process to obtain a uniform layer of sorbent and support on a substrate
- **Develop a design for heating of sorbent** to initiate CO₂ desorption.
- **Design an efficient process cycle** for adsorption, heating, and desorption to maximize sorbent productivity and minimize the overall capex and opex for the process.

Project Success & Milestones

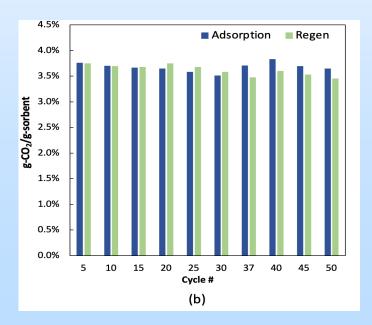
Project Success Criteria

- Complete at least 100 cycles of bench-scale system (1 kg/day CO₂ capture), continuous testing of the DAC process cycle to show less than 5% decrease in CO₂ capacity
- Process model which accurately predicts performance (adsorb/desorb rate, capacity, desorb heating requirements) within 5% of experimental results
- Attainment of the targeted TRL 4 on successful completion of bench-scale testing
- Final TEA showing progress towards DAC cost reduction to < \$250/ton CO₂
- LCA showing GHG removal efficiency of >50%.


Sorbent Washcoat Optimization

Determined a support

material for washcoating


Effects of Support

- Synthesized granules of alkali metal (Na and K) sorbents dispersed on different supports
- Investigated: sorbent compositions, particle size, porosity, acidity, surface area
- Samples were tested to evaluate
 - CO₂ capture capacity
 - Sorption kinetics
 - Stability

Washcoat Loading

- High porosity cordierite monolith with thin walls was loaded with 2-3 g/in³ of washcoat
- Coated monolith was tested for 50 cycles to demonstrate high washcoat stability

Sorbent Stability

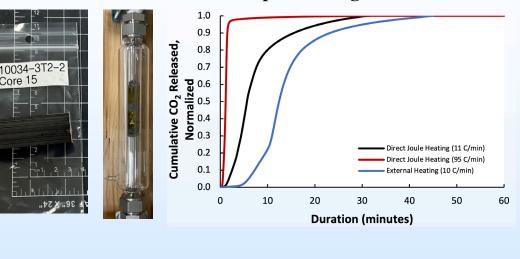
- 250 cycle aging test performed in TGA on sorbent granules to confirm sorbent stability
- No degradation in sample observed

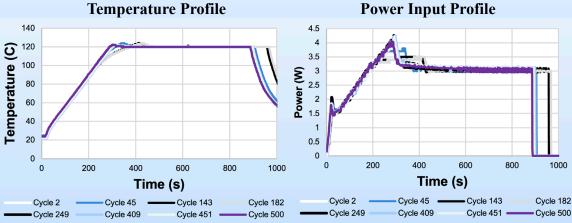
Initial Sample Weight After Desorption

Desorption Method Optimization

- Coated cordierite monoliths with a layer of carbon to impart electrical conductivity and test Joule heating performance
 - Explored different carbon precursors and used different loadings (g/in³) to achieve target resistance and heating performance
- Developed a coating procedure for achieving target resistivity, long term stability, and low-cost
 - Process is scalable using commercially available materials
- Characterized coated samples for their electrical resistance durability and heating performance

Key results:


- Determined appropriate coating and monolith materials for bench-scale unit
- Identified key parameters for improving coating uniformity
- Identified optimum loading (g/in³) for the resistive layer
- Resistively heated full-size monolith up to 120°C
- Incorporated flow-through electrodes

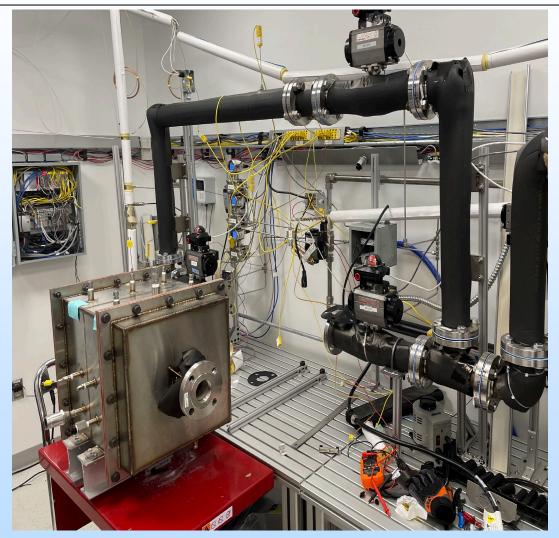


Heating Layer Performance

- Capable of rapid heating, >95°C/min
- Results in rapid rate of CO₂ desorption
- 500 heating and cooling cycles performed on ³/₄" core SMA samples
- Power input consistent through all cycles
- No significant change in heating layer electrical properties

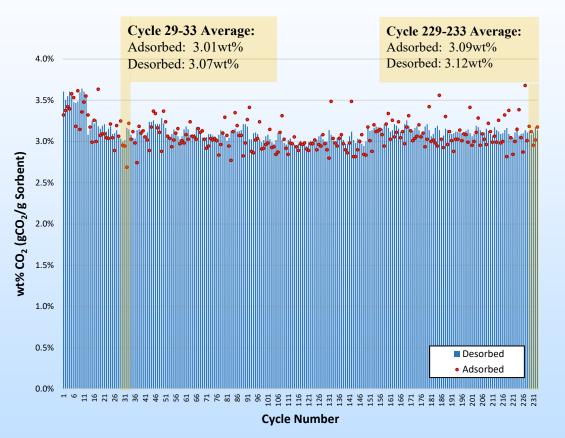
SMA Core Sample Testing

Bench-Scale Unit: Design


- Designed for 1-2 kg/day of CO₂ from ambient air
- Highly instrumented to obtain highfidelity mass/energy balances
- All major process components representative of a scaled-up system
- Full-scale four monolith bricks (150 mm cubes) can be tested
- System fully commissioned in Spring 22.

Bare Monolith

Bench-Scale Unit: Capabilities


- Capture CO₂ from ambient air (not from cylinder gas)
- Test up to 4 SMAs
- Fully automated, 24/7 unit operation
- Customizable control sequencing and sequence conditions
- Online data acquisition, computing, and monitoring

Sample HMI Screen

Bench-Scale Unit Test Results

- No operational issues observed throughout this long-term testing
- No discernable capacity fade observed after cycle 30
- SMA stable after >300 cycles of operation
- Completed Success Criteria: Complete at least 100 cycles of bench-scale system, continuous testing of the DAC process cycle to show less than 5% decrease in system CO₂ capacity

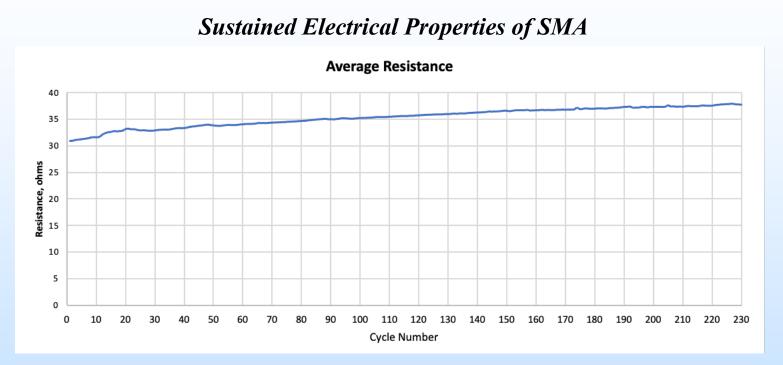
Bench-Scale Unit Test Results

CO₂ Breakthrough Profiles During Adsorption Step

CO₂ Outlet Concentration During Adsorption 600 540 550 5 20 ANA A A MAAA 500 CO₂ Concentration, ppm 500 E 500 480 450 400 CO₂ Inlet Concentration, 460 350 440 300 420 250 Cycle 20 Cvcle 10 Cycle 50 400 Cvcle 30 200 Cvcle 80 3 80 150 Cvcle 110 Cycle 90 Cycle 100 100 Cvcle 140 3 60 Cycle 200 Cvcle 150 Cvcle 190 50 340 Cycle 210 Cycle 220 Cycle 230 0 3 20 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 0 2 4 8 300 0 10 Duration, minutes Cycle Number

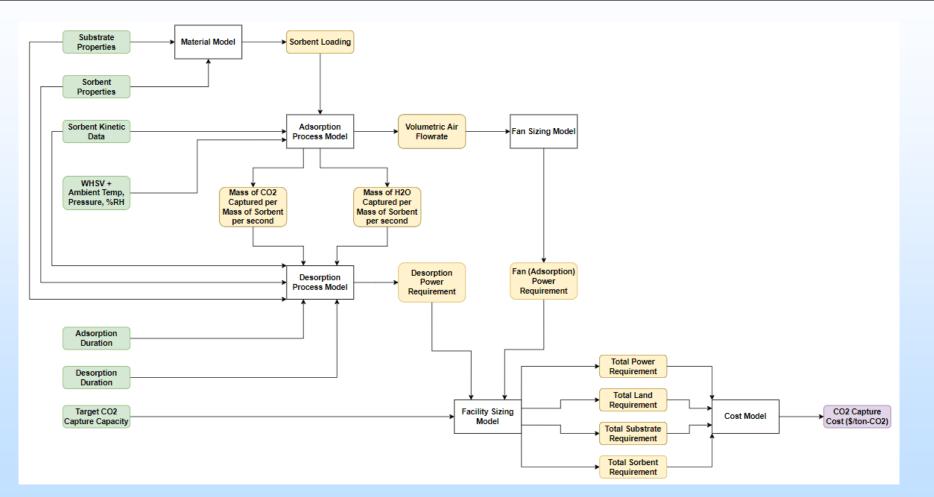
CO₂ Inlet Concentration During Adsorption

- Some air bypass around SMA observed
- No observable changes in breakthrough profiles from cycle to cycle •
 - Concentrations (shift in on y-axis) due to variable day-to-day CO₂ concentration in air feed
- No observable pressure drop across SMA, <0.012 inH₂O

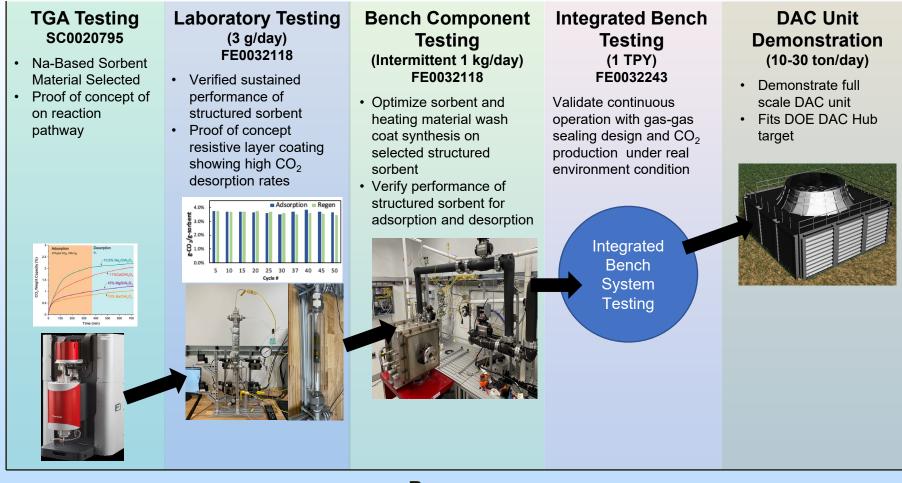


110

120 130 140


100

Bench-Scale Unit Test Results


- SMA resistance stabilizing, consistent with 500 cycle core sample rapid heating test
- Observed resistance increase is manageable for a commercial unit design

Process Model Development

Finalizing process model and technoeconomic assessment

Technology Development Roadmap

Scale

Progress

Acknowledgements

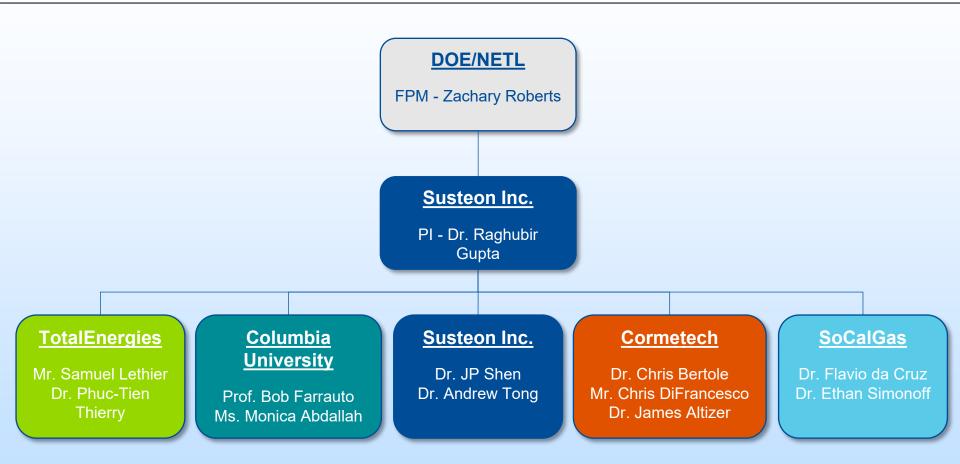
Project Sponsor

 National Energy Technology Laboratory: This material is based upon work supported by the Department of Energy under Award Number DE-FE0032118

Project Partners

- Columbia University (Professor Robert Farrauto)
- Sustaera
- Cormetech
- TotalEnergies
- SoCalGas

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK



Appendix

Organization Chart

Gantt Chart

Project Timeline						Months from Project Start Date																				
	Start Date	End Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Task 1.0 - Project Management and Planning																										
Subtask 1.1 Project Management Plan	1-Sep-21	31-Aug-23																								
Subtask 1.2 Technology Maturation Plan	1-Sep-21	31-Aug-23																								
Milestone 1a: Initial TMP within 90 days of Project Start		30-Nov-21			*																					
Milestone 1b: Final TMP within 90 days of Project Close Out		30-Nov-23																								*
Task 2.0 – Laboratory Studies of Structured Materials																										
Subtask 2.1 – Evaluation of Various Monolith Materials	1-Sep-21	31-Oct-21																								
Subtask 2.2 – Desorption Layer and Sorbent Washcoat Coating Studies	1-Oct-21	31-Dec-21																								
Subtask 2.4 – Structured Material Characterization	1-Dec-21	28-Feb-22																								
Subtask 2.5 – Structured Material Testing in Lab-Scale Reactor	1-Feb-22	30-Apr-22																								
Milestone 2: Demonstrate Functionality of Integrated Structured Material Sorbent		30-Apr-22								*																
Task 3.0 – Bench-Scale Design, Fabrication, and Testing																										
Subtask 3.1 - Design and Construction of th Bench-Scale System	1-Sep-21	31-Dec-21																						-		
Subtask 3.2 - Coating of the SMS for Bench-Scale Testing by a Commercial Vendor	1-Jan-22	30-Mar-22				_																		-+		
Subtask 3.3 - Characterization of Commercially Manufactured SMS	1-Apr-22	31-May-22																						-		
Subtask 3.4 - Structured Sorbent System Bench-Scale Testing	1-Jun-22	31-Aug-22																								
Milestone 3: A CO2 Working Capacity on SMS of 2.5 wt% in Bench-Scale System over 10 cycles.		31-Aug-22												Go/ No- Go												
Task 4. Long-Term Testing																										
Subtask 4.1 - Accelerated degradation Testing at Lab-Scale	1-Sep-22	31-Dec-22				-																		-+	-+	-
Subtask 4.2 - Long-term Testing at Bench-Scale	1-Sep-22	31-Dec-22				-												_						\rightarrow	\rightarrow	-
Milestone 4: Less than 5% capacity fade after 100 cycles		31-Dec-22				_												*					-	-		_
Task 5. Process Design & Modeling																								\neg		
Subtask 5.1 - Process Model Development and Validation	1-Nov-22	31-Jan-23																								
Subtask 5.2 - Desorption Optimization	1-Dec-22	31-Jan-23																								
Subtask 5.3 – Process Cycle Design	1-Jan-23	30-Apr-23																						\neg		
Milestone 4: Process model which accurately predicts performance (adsorb/desorb rate,																										
capacity, desorb heat) within 5% validated against experimental results to date.		30-Apr-23																				*		\square	\square	
Task 6. Techno-Economic Analysis & Life-Cycle Assessment																										
Subtask 6.1 – Techno-Economic Analysis (TEA)	1-Apr-23	31-Aug-23																								
Subtask 6.2 – Life Cycle Analysis	1-May-23	31-Aug-23																								
Milestone 6: High-fidelity TEA and LCA to assess the cost of CO2 capture and impact on GHG emissions from the proposed technology compared to SOTA.		30-Nov-23																								*