Bench-Scale Testing of Monolithic PPI Structured Contactors for Direct Air Capture of CO₂ DE-FE0032094

Dr. Christopher Bertole CORMETECH, Inc.

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

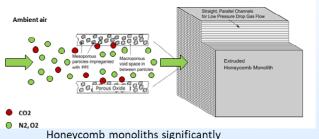
Funding and Performance Dates

- Two years total period, in two budget periods.
- Total Federal Share = \$1,500,000.
- Cost share = 20%.

BUDGET	Budget Period 1 9/15/2021 – 9/14/2022				ıdget Perioc 022 – 12/14		Total 9/15/2021 – 12/14/2023*				
DODGET	Federal Share	Cost Share	Total	Federal Share	Cost Share	Total	Federal Share	Cost Share	Total		
Total	\$882,681	\$220,670	\$1,103,351	\$617,319	\$154,330	\$771,649	\$1,500,000	\$375,000	\$1,875,000		
Cost Share %	20%				20%		20%				

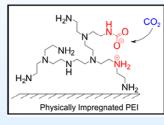
*90-day project NCE to 12/14/23 for completing the TEA/LCA work.

Project Participants

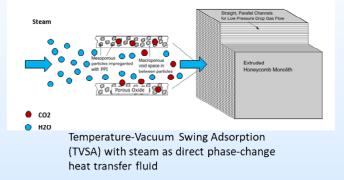


Overall Project Objectives

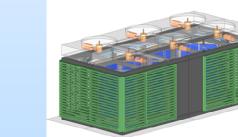
- Develop a next generation oxide monolith + amine structured contactor for DAC, based on poly(propyleneimine) (1-PPI).
- Refine, with inputs from experimental kinetic, thermodynamic and transport measurements, the following models:
 - (i) Single channel monolith model
 - (ii) DAC process model
 - in order to:
 - (iii) Simulate the impact of substrate textural properties (meso and macro porosity) on DAC performance, and
 - (iv) Enable contactor optimization prior to prototype synthesis and bench-scale testing validation.
- Refine the DAC process TEA and LCA.


Technology Background Global Thermostat DAC Platform

1. Moving Large Air Volumes Efficiently

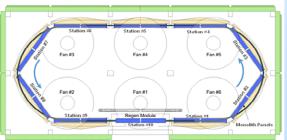

outperform all other designs, enabling low pressure drop and minimum energy cost

2. Capturing CO_2 Selectively at 400 ppm



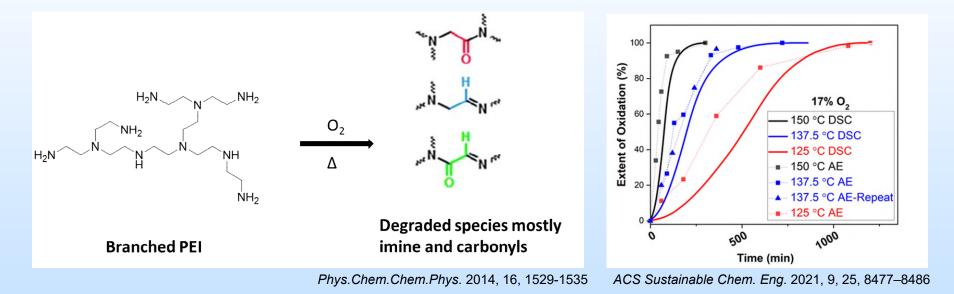
Amine-based polymers, incorporated in proprietary coatings, yield selectivity, capture efficiency, and compatibility with honeycomb monolith approach

3. Energy Efficient Regeneration of Captured CO₂



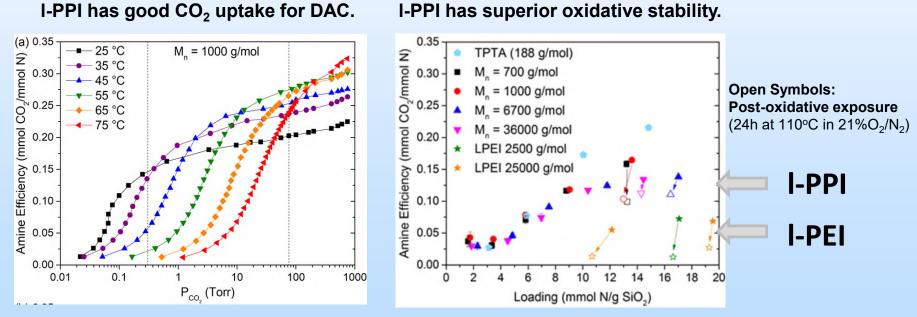
5. Design for Continuous Improvement

Base capital design capable of receiving new and future generations of improved adsorbent materials to regularly maximize capture capacity and extend plant capital life.


4. Capital Utilization Efficiency

Process and mechanical movement design enable multi-bed adsorption configuration serviced by one regen module

Technology Background Oxidative Stability of Base Sorbent: PEI


• Poly(ethylenimine) is known to degrade in the presence of O_2 .

- GT's base DAC process is designed to mitigate high temp exposure.
 - Incorporating a new sorbent with enhanced oxidative stability will improve the on-stream sorbent lifetime in the base GT DAC process, and potentially enable new process paradigms.

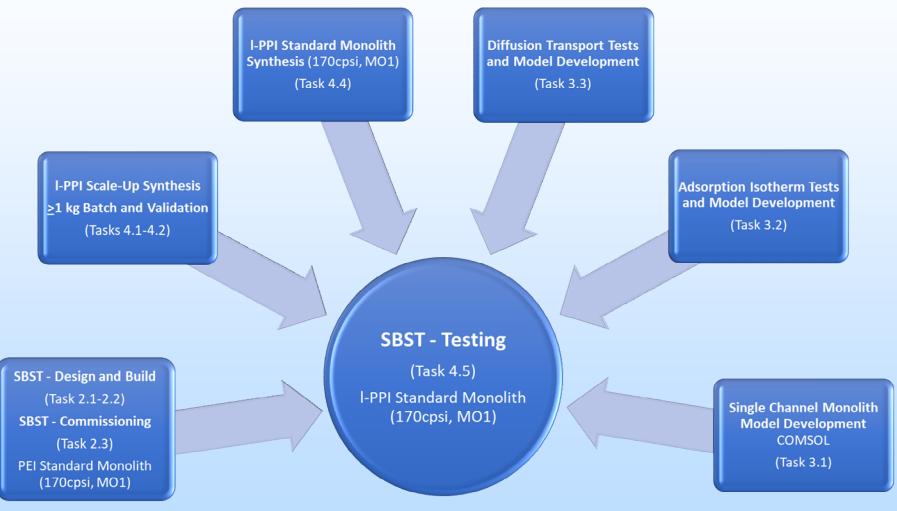
Technology Background Improved Oxidative Stability Sorbent: PPI

- Poly(ethylenimine) / PEI: $-(NH CH_2 CH_2)_{n>1} NH_2$
- Poly(propyleneimine) / PPI: $-(NH CH_2 CH_2 CH_2)_{n>1} NH_2$

Pang, S. H.; Lively, R. P.; Jones, C. W. ChemSusChem 2018, 11 (15), 2628-2637.

Technology Background State before Start of Project

• I-PPI performance under DAC conditions was only known:


- for supported powders,
- under dry feed adsorption,
- and thermal N₂ desorption conditions.

Data were not available for monolith *l-PPI* under "real" process conditions.

• I-PPI was not a commercially available material.

 Cannot order it from a catalog in sufficient quantity to run the bench-scale validation tests for a monolithic form.

Project Steps – BP1 Scale-Up of Linear-Poly(propyleneimine) (1-PPI)

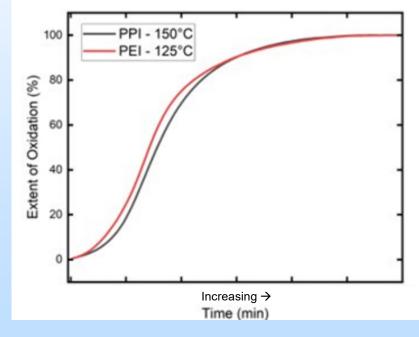
Project BP1 – Success Criteria

Decision Point Date		Success Criteria
Completion of BP1	9/14/2022	 Adsorption data obtained under DAC relevant conditions for PEI baseline part, under at least two different operating conditions; data consistent with core sorption tester. Minimum 1 kg of I-PPI. Capacity of I-PPI > 1.00 (normalized target value basis) on single brick tester. Optimized substrate for I-PPI: min 20% adsorption capacity improved. Energy performance calculated from the process model.

Project – Risks and Mitigations

- Risk 1: bench-scale test unit doesn't work properly.
 - Mitigation: CORMETECH had extensive experience with unit design.
 - Status: complete. Data are in good agreement with core test unit.

• Risk 2: I-PPI produced by sub-contractor is of poor quality.

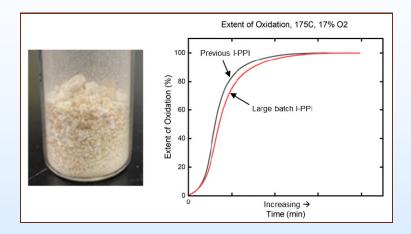

- Mitigation: Global Thermostat set quality specifications for vendor.
- Status: complete. Material produced met quality specifications.

• Risk 3: only 1kg of I-PPI was produced by sub-contractor.

- Achieved target amount (min 1kg), but it's a limited, precious supply.
- **Status: complete.** All core and full-size parts needed in the project work scope have been synthesized and tested.

Oxidative Stability Baseline Test Completed in BP1

- Initial testing of lab-scale I-PPI selected for scale-up:
 - Confirmed significant oxidative stability benefit of 1-PPI over PEI (+25°C).



Isothermal DSC oxidative stability test

1kg L-PPI Scale-Up Batch Completed in BP1

Table shows quality assurance tests run by vendor before shipment; all tests passed spec.

Parameter	Method						
Appearance	Visual inspection						
Average Molecular Weight	Calculated on NMR						
Identity	¹ H–NMR						
Identity	ATR-IR						
Purity	SEC-HPLC RI- Detection						
Metals	ICP-MS						
Amine	Conductometric						
content	titration						
Drying Loss	Extra Drying at 80°C, 5 mbar						

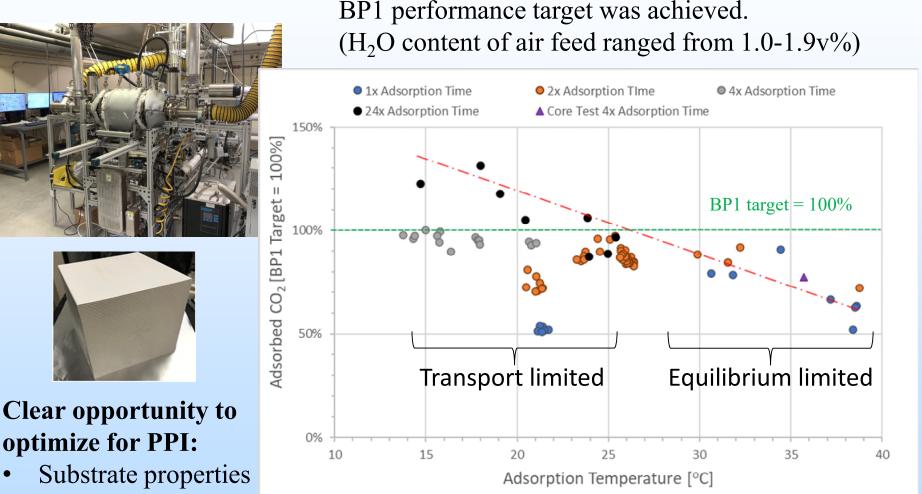
- **GT and GTRC** performed validation tests on a small aliquot of the large batch 1-PPI (ATR, CO₂ capacity, NMR, melting point, oxidative stability).
- Data comparison to the previously synthesized 1-PPI indicated that the large-batch 1-PPI is good material.

<u>Single Brick Sorption Tester (SBST)</u> Bench-Scale Test Unit / Completed in BP1

Test Cycle: Air Adsorption \rightarrow Vacuum Purge \rightarrow Steam Injection \rightarrow Vacuum Purge.

CORMETECH.

Fully-automated test unit.

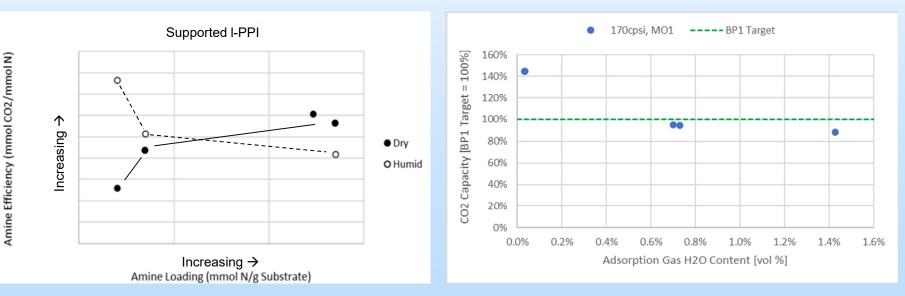

Low-range analyzers (inlet, outlet) for air stream analysis.

High-range analyzer for product stream analysis.

Mass spectrometer for fast transient analysis (steam out).

Commissioning: PEI part data agreed well with core data.

BP1 SBST Data for 1-PPI Monolith (170cpsi Standard Monolith MO1 Substrate)



Amine loading

Core sample data (corrected to same PPI loading) is consistent with SBST data. 15

BP1 TGA and Core Test Data Impact of Adsorption Air Moisture Content

- Air moisture can decrease I-PPI's CO₂ adsorption capacity.
- Humidity's impact depends on the I-PPI loading: it promotes at low PPI loading but inhibits at higher PPI loadings.

Humid TGA data by Global Thermostat

Core sample data by CORMETECH

Project Steps – BP2 Scale-Up of Linear-Poly(propyleneimine) (1-PPI)

Project BP2 – Success Criteria

Decision Point	Date	Success Criteria						
Project Completion	12/14/2023	 Minimum of 1 full-size I-PPI loaded optimized substrate ready for testing on the single brick sorption tester. Capacity of I-PPI > 1.20 (normalized target value basis) on single brick tester. Oxidative stability of I-PPI validated, per State Point Data Table. Transport data obtained from at least 2 different methods show < 50% variation. The TEA/LCA show advantages of I-PPI-based DAC systems vs. PEI-based DAC systems. 						

Synergy Achieved

Fundamentals: Structure / Property Relationships

- Adsorption/desorption isotherms (Global Thermostat)
- Diffusive transport (Georgia Tech)
- Single-channel monolith model (CORMETECH)

Monolith Prototyping

- Batch and extrude monolith prototypes at CORMETECH, with structures optimized for 1-PPI (from Fundamentals).

• Monolith Testing

- Test optimized 1-PPI monolith at CORMETECH on SBST.

Tasks 6.1-6.3, 8.1-8.2 Approach to Optimize Substrate for 1-PPI

Focus Areas for Improvement

- Increase CO₂ uptake rate.
 - Modify size and distribution of meso / macro pores \rightarrow faster diffusion
 - Increase cell density \rightarrow faster transport (bulk channel to monolith wall)

• Increase CO₂ uptake capacity.

- Increase pore volume \rightarrow higher PPI loading
- Lower cell density and increase wall thickness \rightarrow higher PPI loading
- Increase amine efficiency \rightarrow better PPI utilization

• Reduce H₂O inhibition effect on CO₂ uptake capacity.

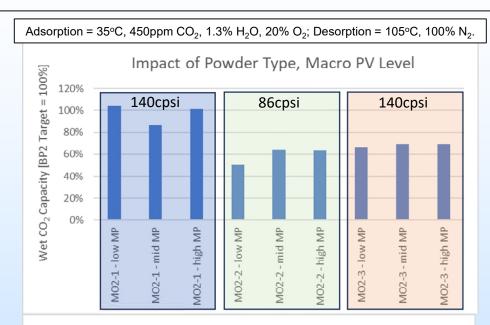
- Modify mean size / distribution of meso / macro pores
- Optimize PPI loading

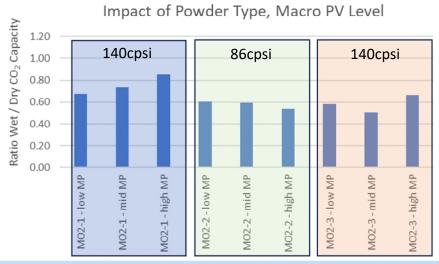
Tasks 6.1-6.3, 8.1-8.2 Approach to Optimize Substrate for 1-PPI

<u>Work</u>

• "Set 1" monoliths.

- Three MO2 powders with a range of meso-pore diameters.
 - MO2-1: smallest diameter meso pores
 - MO2-2: middle diameter meso pores
 - MO2-3: largest diameter meso pores


- Three levels of macro-porosity achieved by addition of pore former.


- Low MP: no pore former addition
- Mid MP: mid-level pore former addition
- High MP: high-level pore former addition
- Made Set 1 samples with existing lab-process dies.
 - MO2-1: 140 cpsi
 - MO2-2: 86 cpsi
 - MO2-3: 140 cpsi

– Test matrix for evaluation:

• 2 factors/3 levels: extruded 9 substrates and activated 9 samples.

"Set 1": PPI-Monolith Data

Best performing monolith:

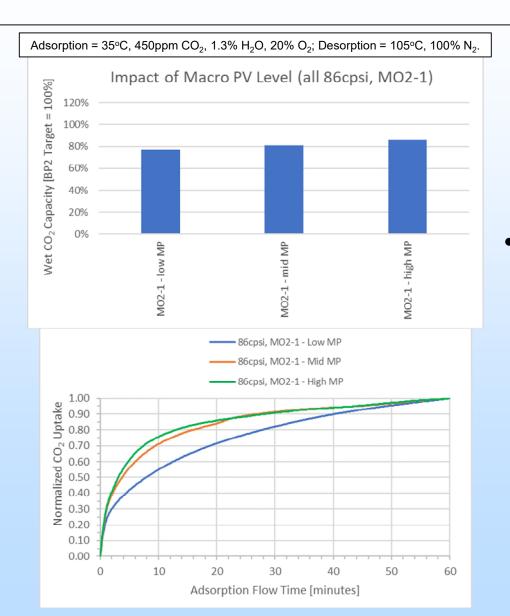
- MO2-1 powder.
- High MP level.

Tasks 6.1-6.3, 8.1-8.2 Approach to Optimize Substrate for 1-PPI

<u>Work</u>

• "Set 2" monoliths.

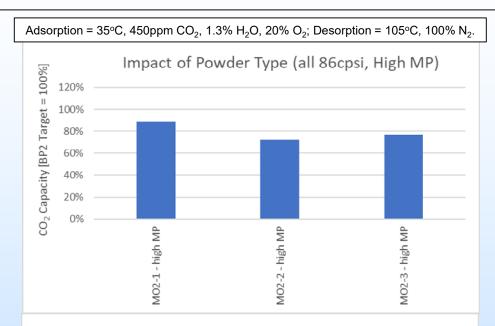
- Made Set 2 samples with new lab-process dies.
 - 86 cpsi / thick wall, 170 cpsi reference, 325 cpsi.

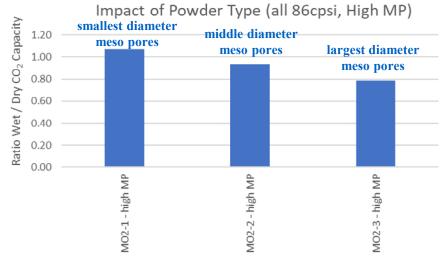

– Test matrix for evaluation:

- Extruded 21 substrates and activated 7 samples.
- Focus is on MO2-1-high MP (based on "Set 1" testing feedback).

Confirmed MP level selection.

- MO2-1-low MP, MO2-1-mid MP, MO2-1-high MP: all with 86 cpsi / thick wall.
- Confirmed MO2 powder type selection.
 - MO2-1, MO2-2, MO2-3: all with 86 cpsi / thick wall and high MP.
- Confirmed cell density selection.
 - 86 cpsi / thick wall, 170 cpsi reference, 325 cpsi: all with MO2-1-high MP.

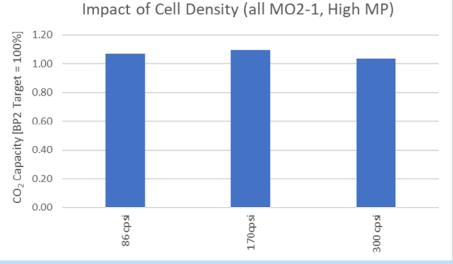

"Set 2": PPI-Monolith Data



Best performing monolith:

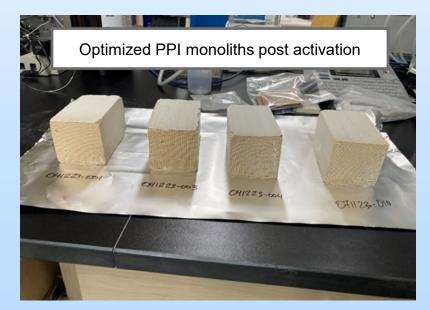
- MO2-1 powder.
- High MP level.

"Set 2": PPI-Monolith Data

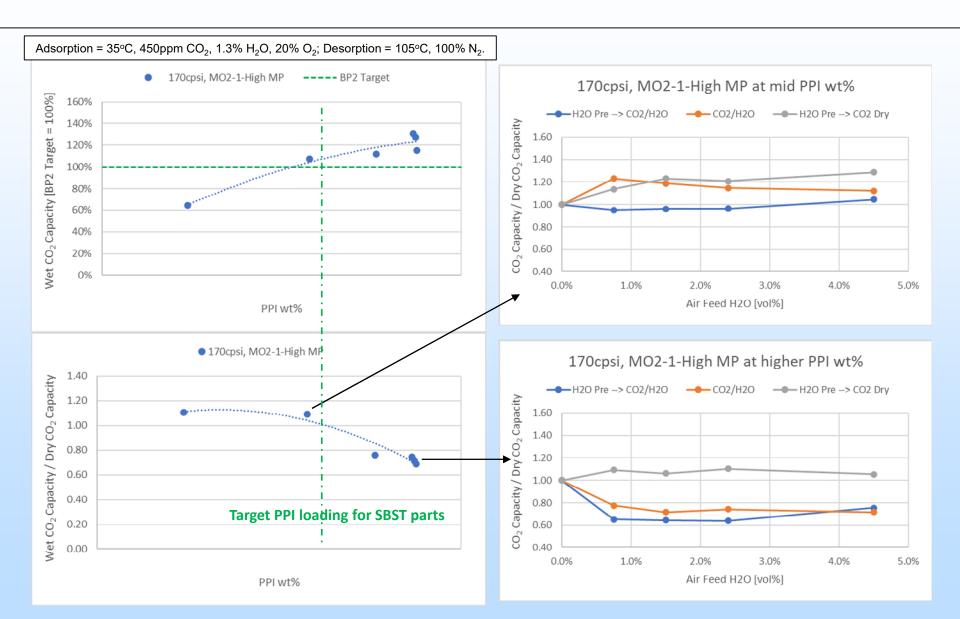


- **Best performing monolith:** – MO2-1 powder.
- Water inhibition effect:
 - Inverse relationship with pore diameter.

"Set 2": PPI-Monolith Data


- **Best performing monolith:** - 170cpsi.
- Optimal monolith selection:
 - 170cpsi
 - MO2-1
 - High MP

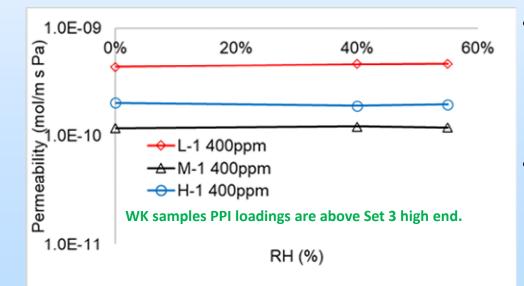
Tasks 6.1-6.3, 8.1-8.2 Approach to Optimize Substrate for 1-PPI


<u>Work</u>

• "Set 3" monoliths.

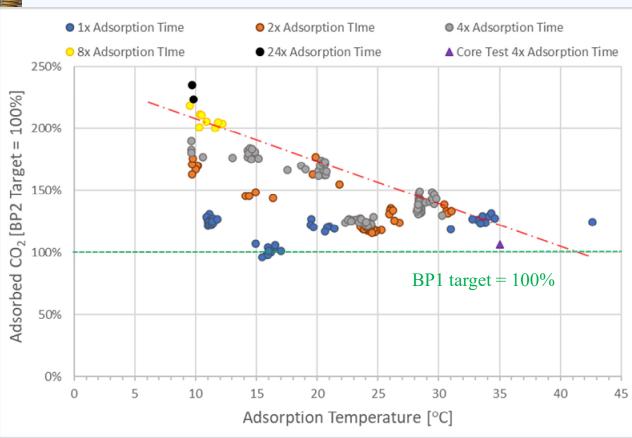
- Optimal monolith selection = 170cpsi, MO2-1, High MP
- Confirmed optimal PPI loading for this substrate.
 - Meet BP2 capacity target, minimize water inhibition.
- Made large PPI-monolith part (composite of 4 quadrants) for SBST testing.

"Set 3": PPI-Monolith Data



WK Data for PPI-MO2-1

Wicke-Kallenbach membrane diffusion cell



- WK testing confirms that humidity does not impact the diffusive flux of CO₂ through the PPI-loaded monolith substrate wall.
- Water inhibition effect likely originates from capillary condensation in between small PPI domains → higher loadings may increase PPI domain size.

BP2 SBST Data for I-PPI Monolith (170cpsi Optimized Monolith MO-2 Substrate)

~2x capacity increase relative to BP1 result.

BP2 performance target was exceeded!

(H₂O content of air feed ranged from 0.8-2.2v%)

Core sample data (corrected to same PPI loading) is consistent with SBST data. 30

Lessons Learned

PEI is a hydrophilic, liquid amine.

l-PPI is a hydrophobic, solid amine (melting point ~ 110°C).

Use of *l*-PPI instead of PEI is not a simple substitution.

- Impregnation protocol requires non-aqueous solvents.
 - Scale-up consideration (powders \rightarrow monolith cores \rightarrow full-size monoliths).
- Structure of the I-PPI solid domains in the porous solid monolith structure impacts performance.
 - Humidity either promotes or inhibits CO₂ adsorption, depending on the l-PPI loading and the pore size distribution.

Next Steps Testing/Development/Commercialization

• In this project:

- Complete remaining BP2 work activities:
 - Oxidative stability testing and update models.
 - DAC process TEA and LCA for 1-PPI.
- Project closeout meeting on December 8, 2023.
- After this project:
 - Larger-scale demonstration of PPI.
 - Depends on feasibility & cost of upscaling 1-PPI synthesis.

Summary Slide

- L-PPI supported on an optimized monolithic substrate has been synthesized and tested on the bench-scale, exceeding the BP2 CO₂ adsorption capacity target.
- Monolithic 1-PPI is a promising Next Gen adsorber material for the Global Thermostat DAC process.

Organization Chart – Participants

Prime Recipient

CORMETECH.

Sub-Recipient

Sub-Recipient

Christopher Bertole (PI) – Sr. Director, Product and Applications Development Gavin MacInnes – Lead Catalyst Development Engineer Travis Jones – Manager, Product and Applications Development Laboratory Colby Burtt – Lead Process Development Engineer James Altizer – Sr. Director, Product and Manufacturing Development Amanda Currie, Dilair Khara, Joe Kliwinski – Sr. R&D Technicians Casey Huten – Lead Engineering Technician Chris Lawson – Sr. Engineering Technician Derick Sufczynski – Engineering Technician John Powe, Chacko John, Kyle Kearney – Development Technicians

Chris Jones – John F. Brock III School Chair & Professor Ryan Lively – Associate Professor Anthony Vallace – Postdoctoral Research Fellow

Eric Ping – VP, Technology Development Miles Sakwa-Novak – VP, Materials Cassandra Hertz – Research Scientist II Abby Clabaugh – Development Engineer Stephanie Didas – Director, Innovation

Organization Chart – Project Efforts

Prime Recipient

- □ Bench-scale test unit (SBST) design, build, and commissioning
- **G** Full-size I-PPI monolith impregnation and CO₂ capacity testing
- □ Single channel monolith modeling for optimization
- □ Monolith porous substrate optimization and prototype extrusion

Sub-Recipient

Sub-Recipient

- □ I-PPI validation testing
- **CO₂ diffusion rate measurements**
- Transport modeling
- I-PPI procurement and validation testing
- **CO₂** adsorption/desorption measurements
- Adsorption modeling
- I-PPI oxidative stability testing
- TEA and LCA

Project Schedule – Gannt Chart

D	Task Name	0.1	Q1	Year 1 Q2 Q3	04	QS	Year 2 Q6 Q7	QS	09	Year 3 Q10 Q11 0
1	Task 1 - Project Management and Planning	4.1		42 4		- up	Q0 Q/	49		
2	Subtask 1.1 - Project Management Plan (PMP)					_			CM	
3	Deliverable 1 - PMP Update (100% Complete)		10/1	s						
4	Subtask 1.2 - Technology Maturation Plan (TMP)							CM		
5	Deliverable 2 - Initial TMP (100% Complete)			12/15						
6	Deliverable 3 - Final TMP								9/14	
7	Task 2 - Bench-Scale SBST (100% Complete)									
8	Subtask 2.1 - Design and Build (100% Complete)			CM						
9	Subtask 2.2 - Commissioning (100% Complete)			- C	M					
10	Milestone - Single Brick Tester Validated and Ready for Use with New Compositions (100% Complete)			2/	14					
11	Task 3 - Experimental Testing and Models Development (100% Complete)									
12	Subtask 3.1 - Single Channel Monolith Model Development (100% Complete)				_	CM				
13	Subtask 3.2 - Adsorption / Desorption Testing and Model Development (100% Complete)		*		_	GT				
14	Subtask 3.3 - Diffusion and Transport Testing and Model Development (100% Complete)				_	GTRC				
15	Task 4 - I-PPI Production & Validation (100% Complete)				_					
16	Subtask 4.1 - Produce I-PPI at kg scale (100% Complete)			. G	r					
17	Subtask 4.2 - Validate I-PPI performance (100% Complete)		*	G	TRC					
18	Milestone - Production of Minimum 1kg of I-PPI for Project Use (100% Complete)			3/	14					
19	Subtask 4.3 - Assessment of I-PPI Scalability to Commercial Scale (100% Complete)				-	GT				
20	Subtask 4.4 - Impregnate Standard Monolith with I-PPI for SBST (100% Complete)			*	OM I					
21	Subtask 4.5 - Testing of I-PPI Loaded Monolith on SBST (100% Complete)				-	CM				
22	Task 5 - Techno-Economic Analysis (TEA) and Process Modeling (100% Complete)				_					
23	Subtask 5.1 - Process Modeling (100% Complete)		4			GT				
24	Subtask 5.2 - Initial TEA and LCA (100% Complete)					GT				
25	Milestone - Single Channel Model (v 1) Ready to Optimize Substrate for I-PPI (Min 20% Improved) (100% Complete)					9/14				
26	Milestone - Achieved Capacity of I-PPI Loaded Standard Monolith > 1.00 on Single Brick Tester (100% Complete)					9/14				
27	Milestone - Process Model (v 1) Complete (100% Complete)					9/14				
28	Milestone - Initial TEA/LCA Complete (100% Complete)					9/14				
29	Task 6 - Experimental Testing and Models Refinement (90% Complete)					-			•	
30	Subtask 6.1 - Single Channel Monolith Model Refinement (90% Complete)					-			CM	
31	Subtask 6.2 - Adsorption / Desorption Testing and Model Refinement (90% Complete)					-			GT	
32	Subtask 6.3 - Diffusion and Transport Testing and Model Refinement (90% Complete)					-			GTRC	
33	Task 7 - Sorbent Oxidation Experiments to Validate I-PPI Stability (90% Complete)					-			-	
34	Subtask 7.1 - Accelerated Oxidation Testing under Dry & Humid Conditions (100% Complete)						GT			
35	Subtask 7.2 - Incorporate Oxidation Kinetics into the Single Channel Monolith Model (0% Complete)						ř.,		CM	
36	Subtask 7.3 - Quasi-Accelerated Humid Oxidation Testing (90% Complete)								GT	
37	Task 8 - Development, Synthesis and Testing of Optimal Monolith Substrate Formulation for I-PPI (100% Complete)					-			-	
38	Subtask 8.1 - Single Channel Monolith Model Simulation Work to Develop Optimal Substrate for I-PPI in DAC (100% Com					-	CM			
39	Subtask 8.2 - Batching, Extrusion and Impregnation of Prototype Substrates for Optimal I-PPI DAC Performance (100% Cor						ř.	CM		
40	Milestone - I Full-Size Brick of I-PPI Loaded Optimized Substrate Monolith Ready for Single Brick Sorption Tester							6/14		
41	Subtask 8.3 - Testing of Optimized Monolith/I-PPI Compositions in Single Brick Sorption Tester (100% Complete)							ř	CM	
42	Task 9 - Techno-Economic Analysis (TEA) and Process Modeling					-				1
43	Subtask 9.1 - Process Cycle Opportunity Analysis					*			GT	
44	Subtask 9.2 - Process Model Updates								GT	
45	Subtask 9.3 - Final TEA and LCA								GT	
46	Deliverable 4 - Final TEA								8/14	
47	Deliverable 5 - Final LCA								4/14	
48	Milestone - Final TEA and LCA								1	12/14
49	Milestone - Final TMP									12/14
50	Milestone - Process Model (v 2) Complete								9/14	
51	Milestone - Single Channel Model (v 2) Complete								9/14	
52	Milestone - Oxidative Stability of I-PPI Validated								9/14	
53	Milestone - Achieved Capacity of I-PPI Loaded Optimized Monolith > 1.20 on Single Brick Tester (100% Complete)								\$ 9/14	

36