

С

CarbonBuilt

Project Number: DE-FE0031915 Project Manager: Isaac "Andy" Aurelio

Prepared by: Dr. Dale Prentice, Dr. Manas Sarkar, Prof. Dante Simonetti and Prof. Gaurav Sant Institute for Carbon Management (ICM)

UCLA Samueli School of Engineering

Prepared for: 2023 Carbon Management Research Project Review Meeting

August 30th, 2022

Where: Pittsburgh, PA

Carbon Management Research Project Review Meeting, 30th Aug, 2022

Samueli

School of Engineering

UCLA

The problem at hand – CO₂ emissions from cement/concrete

CarbonBuilt

Samueli

School of Engineering

Concrete ~ 8% of global CO₂ emissions

- Most widely used substance after water
- 90% of emissions from production of cement

No broadly-applicable alternatives

 2x the combined volume of steel, plastics, wood, aluminum

UCLA

• CO₂ curing appears promising, but...

- Enabling materials have been expensive or scalelimited
- Traditionally has required concentrated and purified CO₂

Large-scale demonstrations needed

Technology feasibility needs to be rigorously proven

Carbon Management Research Project Review Meeting, 30

 Life cycle analysis (LCA) of concrete considers 4 key stages of concrete lifecycle

UCLA

- For concrete producers key stage is product stage
 - Raw material supply
 - Manufacturing
 - Transport
- Raw material supply is greatest contributor to global warming potential (GWP)

Samueli

School of Engineering

NATIONAL

CHNOLOGY

 Life cycle analysis (LCA) of concrete considers 4 key stages of concrete lifecycle

UCLA

- For concrete producers key stage is product stage
 - Raw material supply
 - Manufacturing
 - Transport
- Example of average concrete masonry unit (CMU)
- Raw material supply is greatest contributor to global warming potential (GWP) ~ 63% (~58% cement)

Samueli

School of Engineering

ΝΔΤΙΟΝΔΙ

Samueli

School of Engineering

1. Concrete (hydrated lime/cement/SCMs/waste byproducts)

UCLA

- Replace cement in concrete with alternative materials
- Pricing < cement, and less carbon intensive
- Converts to limestone (CaCO₃) when exposed to CO₂

2. Dilute CO₂

- Ambient temperature and pressure
- No need for capture, purification or compression
- Direct from kiln, thermal power plant or other source

ΝΔΤΙΟΝΔΙ

Accelerated concrete carbonation curing pathways

Carbonation during mixing

- Utilizes 100% CO₂
- Requires processing to purify CO₂
- Additional transport required to obtain CO₂
- Example company: CarbonCure

 CO_2

Source

Carbonation post-forming

- Pressure reactor CO₂ steadily released into reactor to maintain specified pressure
- Utilizes 100% CO₂
- Example company: Solidia
- Flow through reactor uses CO₂ straight from emitter
- Requires gas processing
- Utilizes 2-100% CO₂
- Example company: CarbonBuilt

 Identification of three most-preferred geometries compatible with the Reversa[™] process

UCLA

- Development of a process model that informs the scale-out of the process to produce diverse precast (structural) components
- Modification and validation of existing prototype
- Completion of TEA and LCA to quantify the market viability and lifecycle impact of the Reversa[™] technology

Samueli

School of Engineering

Concrete component selection and strength targets

- Concrete units were chosen based on technical and market prospects
- Based on combined scoring criteria: concrete masonry units (CMU), segmented retaining walls (SRW), and wet-cast manholes were selected
- Optimized processing and mixture formulation produced for each product exceeded ASTM strength targets
- Portlandite was used as main feedstock and exceeded conversion and kinetic targets (0.2 gCO₂/gCH and 1x10⁻⁴ s⁻¹)

Optimizing CO₂ curing regime – process model development

 Key stages for accelerated concrete carbonation: 1) concrete forming, 2) gas processing and 3) accelerated carbonation

Samueli

School of Engineering

- Aspen simulation developed to optimize CO₂ curing process
- Must balance gas processing energy penalties with CO₂ uptake from carbonation

Process model outputs

- Key model outputs:
- 1. Solid phase conversion reactor conditions
- 2. Total gas conversion
- 3. System energy requirements

• Net CO₂ emissions of system can be determined:

Net CO₂emissions

 $= Energy \cdot eGrid factor - CO_2uptake$

Upscaling to 10 tons/d concrete carbonation

CarbonBuilt

Samueli

School of Engineering

- Designed the prototype from benchscale data inputted into process model
- Process model was used to develop large-scale prototype to carbonate 10 tons/d concrete
- Computational fluid dynamics (CFD) used to optimize gas flow and internal reactor geometry for concrete elements
- CFD guided required concrete component flowrate coverage as input for process model

Construction of prototype

CarbonBuilt

- Construction of system underway
- System comprises of gas processing skid and carbonation reactor
- System is targeting to produce ~10-13 ton/d carbonated concrete
 - 3 different products (CMU, SRW and manhole)

Samueli

School of Engineering

UCLA

ONAL

Presentation takeaways

- CO₂ mineralization enables an approach to produce construction products while utilizing CO₂ emissions, with strong market potential
- The UCLA team has successfully identified suitable concrete products for the Reversa process
- Appropriate mixture designs and operating conditions have been identified for optimum CO₂ uptake for each selected concrete component
- A process model has been developed to assist with scaling system design and assisting design work for system fabrication
- Computational fluid dynamics employed to direct reactor and system design
- Construction underway to proceed with large-scale demonstration

Future Work

- System build will aim to process 10-to-13 tons of concrete per day
- The process will be deployed at the National Carbon Capture Center (NCCC) in Wilsonville, Alabama in 2023
- Completion of TEA and LCA to quantify
 quality of system design post-demonstration

UCLA

Thank you for listening

Questions??

Contact information

- Dr Dale Prentice:
 - Email: dalepprentice@ucla.edu
- Prof. Gaurav Sant:
 - Email: gsant@ucla.edu

Useful links: Carbon built website: <u>https://www.carbonbuilt.com/</u>

Institute for Carbon Management: https://icm.ucla.edu/ Production of Inorganic Materials – Concrete and Cement

Technology Performance Data

	Units	Measured/Current	Projected/Target
		Performance	Performance
Reaction			
Thermodynamics ^{1,2}			
Chemical Equation	mol ⁻¹	Ca(OH) ₂ +CO ₂	\rightarrow CaCO ₃ +H ₂ O
ΔH°_{rxn}	kJ/mol	-115.102	
ΔG° _{rxn}	kJ/mol	-74.953	
Reaction Conditions			
CO ₂ Source ³		Synthetic coal-fired flue gas	Coal-fired flue gas
Pressure	bar	1.01325	1.01325
CO ₂ Partial Pressure	bar	0.02-0.14	0.02-0.14
Temperature	C	25-75	25-75
Nominal Residence Time – batch reactor ⁴	h	18-24	18-24
Alkaline Reactant Source ⁵		Ca(OH) ₂	Ca(OH) ₂
Process Route ⁶	(direct/	Direct	Direct
	indirect)		
Once-Through Performance ⁷			
CO ₂ Conversion ⁸	(%)	NA	NA
CO ₂ Uptake Potential ⁹	(g-CO ₂ /g material)	0.59	0.59
CO ₂ Uptake Actual ¹⁰	(g-CO ₂ /g material)	0.35-0.53	0.2
Product Properties ¹¹			
Desired Product			
Compressive Strength ¹²	(MPa)	20-49	13.8-42
Density	(kg/m ³)	2000	2000
Product Production	(kg/h)		
Commercial Product Properties ¹³		Current	
Commercial Product		Concrete Masonry Units, Segmented	
		retaining walls, and concrete manholes	
Compressive Strength ¹²	(MPa)	13.8-42	
Density	(kg/m ³)	2000	
U.S. Market Size	(Tonnes/yr)	500 M	
Global Market Size	(Tonnes/yr)	>10 B	
Market Price	(\$/kg)	0.06-0.40	