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Outline

 Short introduction

 Why use Nannochloropsis algae for CO2 uptake

 Large-scale simulations for cellulose formation

 Preliminary work with density functional tight binding 
calculations

 What’s next?
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Cellulosic ethanol

Ethanol fermentation traditional liquid fuel production

Saving 50 % CO2 is still 
released

Better than corn ethanol

> 20-30 gCO2e/M

several ethanol plants have invested

Challenge Economic

Cellulosic ethanol
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 Nannochloropsis: cellulose-producing algae

 Can capture waste CO2 from ethanol 
fermentation to produce

• Algal lipids used for biodiesel
production microcrystalline
cellulose as high-value co-
product

Nannochloropsis for CO2 Uptake
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Nannochloropsis for CO2 Uptake

 Economic & environmental benefits

 Capturing CO2 from ethanol fermentations supports algal production 
and enables potential greenhouse gas savings

 Lignin generated as byproduct can provide heating to support cellulosic 
ethanol production & algal cellulose production

 Lignin is biogenic: its combustion is carbon neutral
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Pretreatment Approaches

Co-Solvent Enhanced Lignincellulosic Fractionation (CELF) developed by 
experimental collaborator (Dr. Cai) to pretreat lignincellulosic biomass

CELF nondestructively fractionates
lignin, oleic, & protein in any plant-
based

Could be extended to algae 
fractionating & extract 
nannochloropsis
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Life cycle analysis
Techno-economic & life cycle analysis will support quantitative outcomes

AspenOne software using modified GREET model for cellulosic ethanol will be used



Materials Science & 
Engineering Program

 Performed CELF pretreatment of industrial hemp and corn stover to prepare glucan-rich material for digestion by 
SSF (simultaneous saccharification and fermentation). 

 CELF pretreated corn stover achieved >80% glucan, however, CELF pretreated industrial hemp only reached 75%
(target 80%). 

 We have begun to optimize CELF conditions to further improve glucan composition for industrial hemp. Once we 
have obtained similar glucan concentrations in both feedstock types, we can begin to measure CO2 emission from 
fermentation.

 Our modeling team has successfully integrated CELF pretreatment, solids filtration, solvent recovery, and 
neutralization processes in AspenOne. We are currently optimizing heat recovery to calculate initial energy balance  
Our goal is to target total heat utilization of 4.5kwh/tonne biomass input.

Preliminary work with CELF
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Preliminary work with CELF

Figure 1. Knife-milled industrial hemp 
stalk subjected to mild CELF 
pretreatment

Figure 2. SSF of CELF-pretreated industrial hemp at 100 g/L 
initial loading. Observed rapid solubilization of solids over 
first four days. Ethanol analysis under way.
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Molecular modelling

 DFT good for small systems 

 Classical molecular dynamics can 
handle large systems but are 
missing the quantum part 

 DFTB merges reliability of DFT 
with computational efficiency of 
tight binding 
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Molecular modelling 

Large-scale Density Functional Tight Binding (DFTB) calculations will 
probe cellulose formation

Cover of May 2019 issue (NETL Project DE-FE0030582)

S. I. Allec, Y. Sun, C.-en A. Chang, B.M. Wong
J. Chem. Theory Comput. 15, 2807 (2019)
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DFTB Primer

Computational savings: pre-parameterized “basis” functions

pre-tabulated as function of RAB

simplifies integrals in SCF procedure

DFTB: coarse-grained, parameterized DFT with atomic-centered basis 
functions
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DFTB Primer

𝑬𝑬𝑩𝑩𝑩𝑩 = �
𝒊𝒊

𝒐𝒐𝒐𝒐𝒐𝒐

�
𝝁𝝁𝝁𝝁

𝒐𝒐𝝁𝝁𝒂𝒂∗𝒐𝒐𝝁𝝁𝒂𝒂𝑯𝑯𝝁𝝁𝝁𝝁
𝟎𝟎

parametrized beforehand from DFT calculations

𝑆𝑆𝜇𝜇𝜇𝜇 = � 𝜙𝜙𝜇𝜇 𝑟𝑟 𝜙𝜙𝜇𝜇 𝑟𝑟 𝑑𝑑3𝑟𝑟

𝐻𝐻𝜇𝜇𝜇𝜇0 = 𝜙𝜙𝜇𝜇 𝐻𝐻0 𝜙𝜙𝜇𝜇

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐵𝐵 + 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟
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DFTB Primer

𝜸𝜸𝑰𝑰𝑰𝑰 𝑹𝑹𝑰𝑰𝑰𝑰 = �
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𝑹𝑹𝑰𝑰𝑰𝑰

,
𝑰𝑰 = 𝑰𝑰

𝑰𝑰 ≠ 𝑰𝑰𝐸𝐸𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 =
1
2
�
𝐼𝐼𝐼𝐼

𝛾𝛾𝐼𝐼𝐼𝐼 𝑅𝑅𝐼𝐼𝐼𝐼 𝛥𝛥𝑞𝑞𝐼𝐼𝛥𝛥𝑞𝑞𝐼𝐼

param ed ep es Ud Up Us fd fp fs
C 0.0 -0.194 -0.505 0.365 0.365 0.365 0.0 2.0 2.0
H 0.0 0.0 -0.239 0.419 0.419 0.419 0.0 0.0 1.0
O 0.0 -0.332 -0.879 0.236 0.236 0.236 0.0 4.0 2.0

S 0.321 -0.258 -0.630 0.328 0.328 0.328 0.0 4.0 2.0

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐵𝐵 + 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

e = onsite energy, U = Hubbard U, f = occupation number

3ob-3-1 skf parameter

parametrized beforehand from DFT calculations

Computational Materials Science 47 (2009) 237–253
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DFTB Primer

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝐼𝐼<𝐼𝐼

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝐼𝐼𝐼𝐼 𝑅𝑅𝐼𝐼𝐼𝐼

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐵𝐵 + 𝐸𝐸𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

Pre-parameterization allows fast calculations of large systems
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Simulated CELF Pretreatment

Lignin subunits:

β-O-4

• G-G

• G-S

• S-G

Model of lignin dimer β-O-4:

p-hydroxylphenyl (H)syringyl (S)guaiacyl (G)

Connected interlinkages:
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DFTB

 DFTB3 (3ob-3-1) + DFT-D3 disp effect

 PBC (mimic periodicity)

 DFTB relaxation (Force < 0.07 eV/A)

 Co-solvent:

- 1:1 THF:Water v/v ratio

- Acid (H2SO4)

GG dimer β-O-4 (2560 atoms)

water

THF

Acid
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 GG dimers

 NVT (423 K): Nose-Hoover 
Thermostat

 @NERSC (National Energy 
Research Scientific Computing) 

Preliminary work with DFTB-MD
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Preliminary work with DFTB-MD

 GS dimer
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 SG dimer

Preliminary work with DFTB-MD
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DFTB enables fast 
predictions of cellulose 

formation

CELF

Summary
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Outlook

 Vary temperature

 Longer time scale

 Other dimer structures
 G-H

 H-G

 H-H

 H-S

 S-H

 S-S

DFTB-MD calculations for cellulose formations:

 Add more acid (SO4H2)

CELF Pretreatment
 Improve glucan composition for industrial hemp

 Measure CO2 emission from fermentation

 AspenOne: optimizing heat recovery 
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Web: http://bmwong-group.com

E-mail: bryan.wong@ucr.edu
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