Photosynthesis-driven microalgal system to mitigate carbon dioxide emission from power plant flue gases

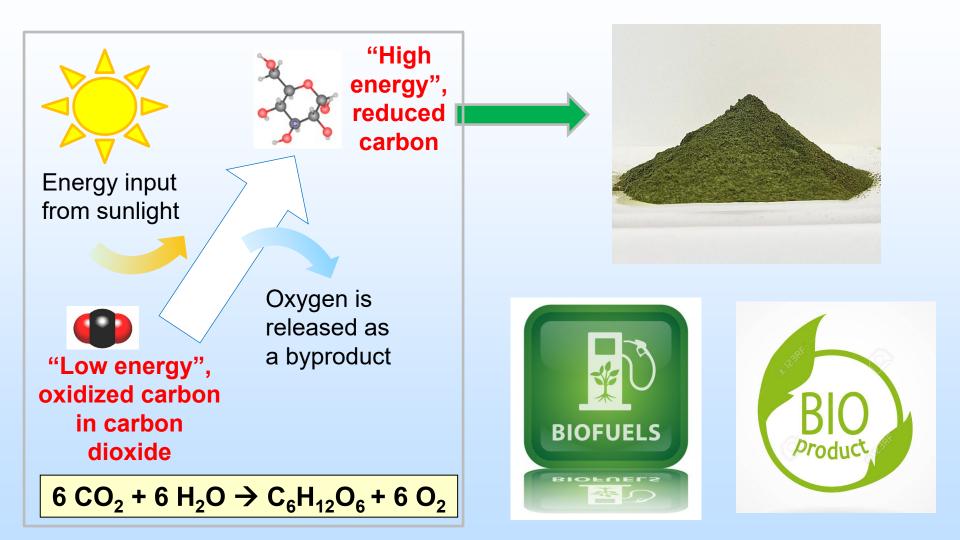
DE-FE0032188

 Yantao Li, Feng Chen, and Russell Hill, University of Maryland Center for Environmental Science;
 Robert Mroz, HY-TEK Bio, LLC;
 Troy Hawkins, Argonne National Laboratory
 Wen Zhang, New Jersey Institute of Technology

> 2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

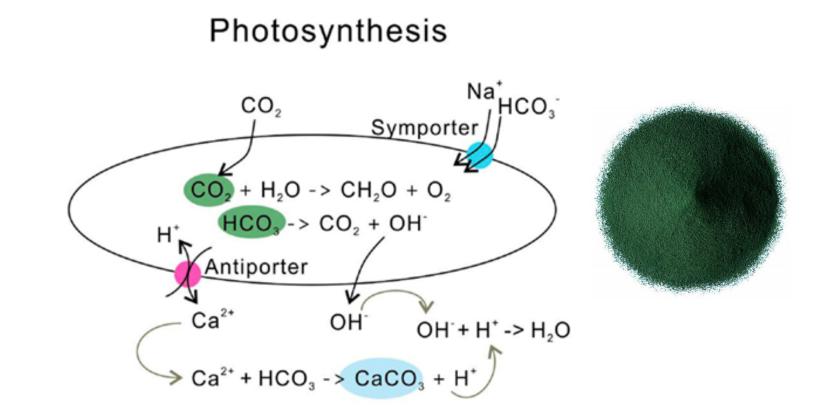
Project Overview

- Funding
 - DOE: \$2,000,000 and Cost Share: \$500,000
- Overall Project Performance Dates:
 - Feb. 2023 to Feb. 2026
 - BP1 (2/15/2023 to 8/14/2024), BP2 (8/15/2024 to 2/14/2026),
- Project Participants:
 - Yantao Li, Feng Chen, Russell Hill, University of Maryland Center for Environmental Science;
 - Robert Mroz, HY-TEK Bio, LLC;
 - Troy Hawkins, Argonne National Lab
 - Wen Zhang, New Jersey Institute of Technology
 - **DOE NETL Program Manager: Zachary Roberts**



Project Overview

- Overall Project Objectives


The objective of this project is to engineer microalgal polycultures through a photosynthesis-driven process to capture and sequester carbon dioxide (CO_2) from power plant flue gases in the form of algae biomass and carbonate precipitates.

Technology Background

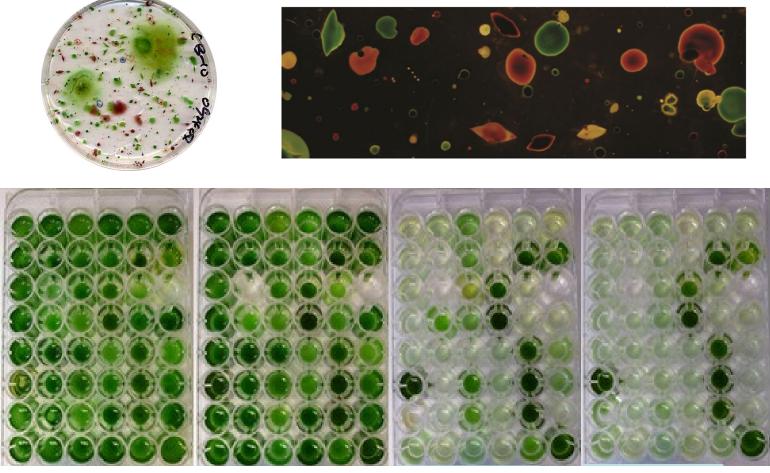
Williams, M.E. (July 31, 2016). Carbon-Fixing Reactions of Photosynthesis. The Plant Cell, doi/10.1105/tpc.116.tt0716. Illustrative pictures from https://www.123rf.com/.

Microalgal Carbon Capture and Biomass Production: <u>Microalgae-driven carbon dioxide mitigation (MadCom)</u>

 $CO_2 + H_2 \ O \rightleftharpoons H_2 CO_3 \rightleftharpoons H^+ + HCO_3^- \rightleftharpoons 2H^+ + CO_3^{2-}$ $Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3$

Adapted from Zhu and Dittrich 2016 Frontiers in Bioeng and Biotech. Mazzone et al., 2002 MARSci.2002.01.020105; DE-FC26-00NT40934

<u>Microalgae-driven carbon dioxide mitigation in nature:</u> Whiting events



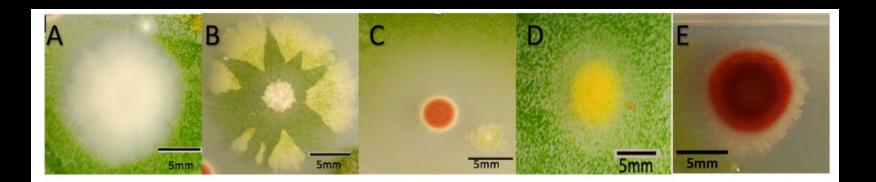
13-year data, Florida Whitings visible in MODIS images on about 14% of time each year

https://earthobservatory.nasa.gov/images/91807/ making-sense-of-whiting-events Escoffier, N. et al. 2022. Journal of Geophysical Research: Biogeosciences. Marl from lake bottom (Courtesy of Larry Bean, rock collector, Livonia, Michigan.), https://www.michigan.gov/

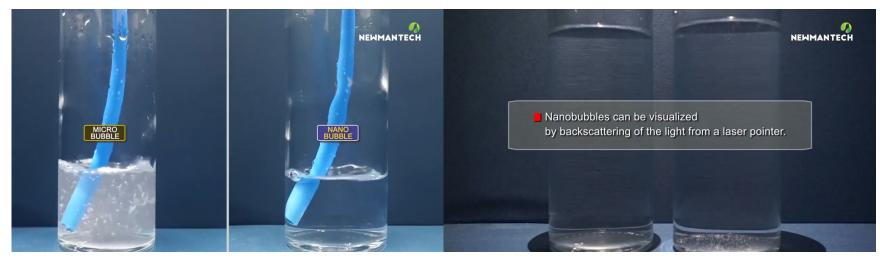
Algal Strain Selection under Simulated Flue Gas

Nannochloropsis oceanica IMET1 and Scenedesmus obliquus HTB1 were selected

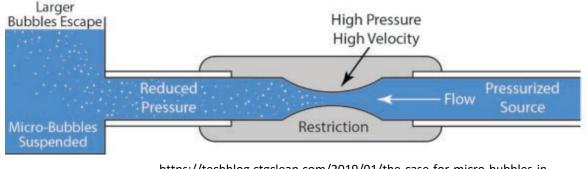
2% CO₂

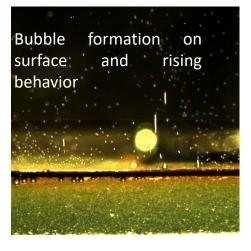


20% CO₂


Dr. Feng Chen, UMCES

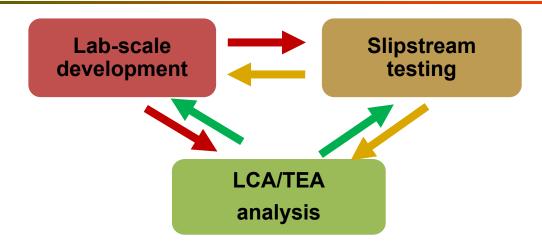
Microbial interactions in non-axenic microalgal cultures




Lin, Lee, Li and Hill.

Microbubbles and nanobubbles to improve carbon utilization efficiency (CUE)

Video sources: http://newmantech.co.kr/nanoe/


https://techblog.ctgclean.com/2019/01/the-case-for-micro-bubbles-in-cavitation/

Wen Zhang and NJIT team

Proposed <u>Microalgae-driven carbon dioxide mitigation TRL</u>

Project overview

Lab-scale development of algal system and culture microbiome optimization (UMCES)

- Subtask 2.1; 3.2: Saltwater algal system and microbiome optimization (Li and Hill)
- Subtask 2.2; 3.3: Freshwater algal system and microbiome optimization (Chen and Hill)

Development and testing of bubblers in the lab and upscaled algal systems (NJIT)
Subtask 2.3, 3.4: Develop and optimize micro-/nano- bubblers (Zhang)

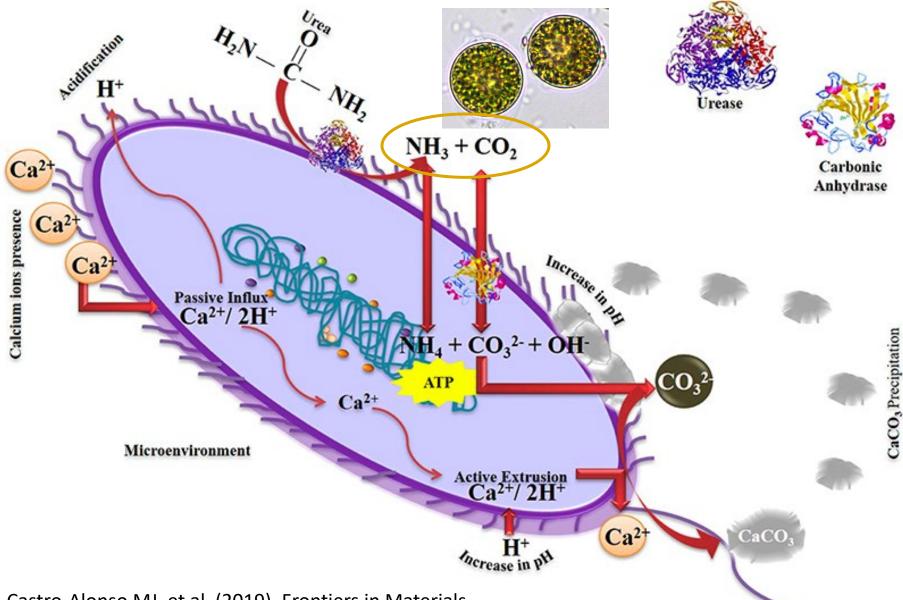
Slipstream testing of the algal carbon sequestration system (HY-TEK Bio)

• Subtask 2.4, 3.1: Slipstream test at 9 L and 1,000 L (Mroz)

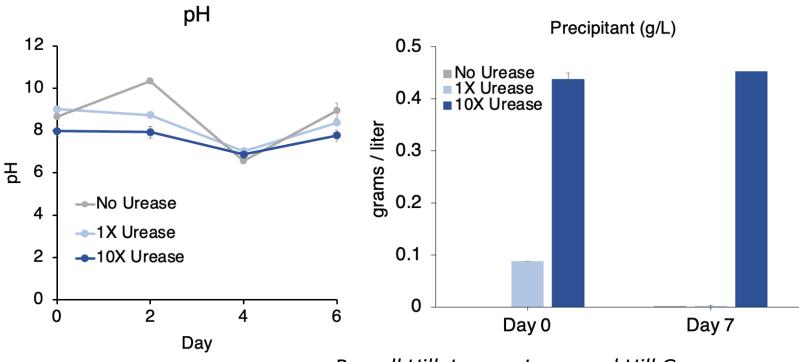
Development of TEA and LCA models (Argonne)
Subtask 4.0: Perform TEA and LCA analysis (Hawkins)

Subtask 2.1 - Laboratory development of seawater Nannochloropsis system

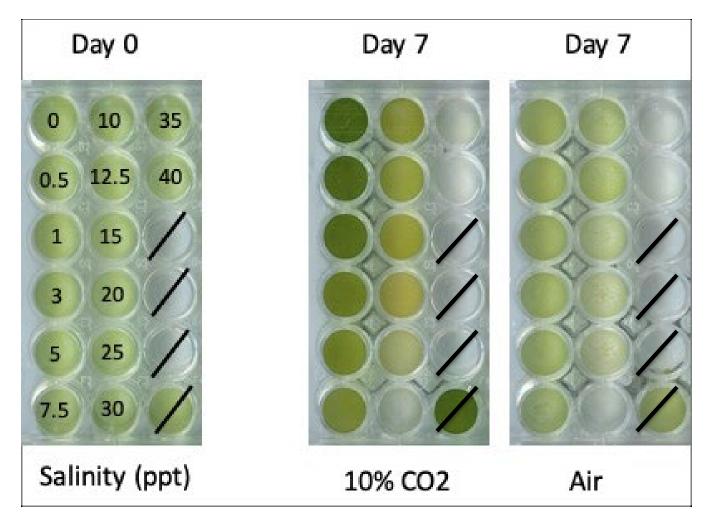
- Analyze the culture microbiome to assess changes in microbial community;
- Isolate and test urease-producing and probiotic bacterial strains;
- Measure CaCO₃ precipitates, culture alkalinity, and biomass yield.


Milestone 2.1 Isolate and confirm the identity of >5 urease-producing bacteria and >5 probiotic bacterial strains for *Nannochloropsis oceanica* IMET1; Date: M15

Subtask 2.2 - Laboratory development of freshwater Scenedesmus system

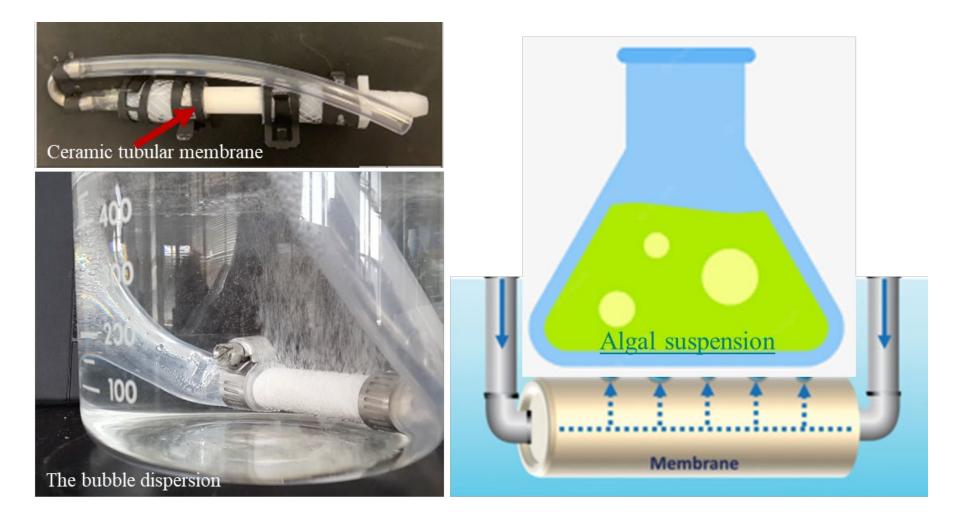

- Analyze the culture microbiome to assess changes in microbial community;
- Isolate and test urease-producing and probiotic bacterial strains;
- Measure CaCO₃ precipitates, culture alkalinity, and biomass yield.

Milestone 2.2 Isolate and confirm the identity of >5 urease-producing bacteria and >5 probiotic bacterial strains for *Scenedesmus* HTB1; Date: M15

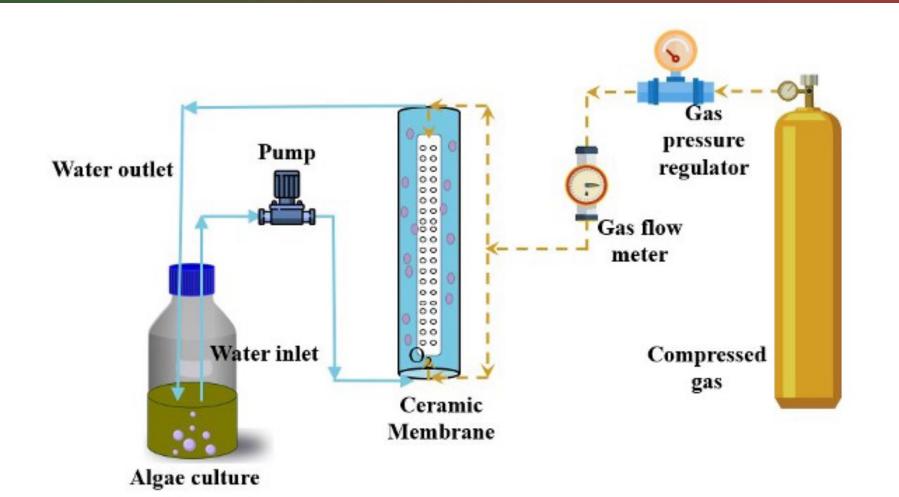

Castro-Alonso MJ, et al. (2019). Frontiers in Materials

Russell Hill, Lauren Jonas and Hill Group

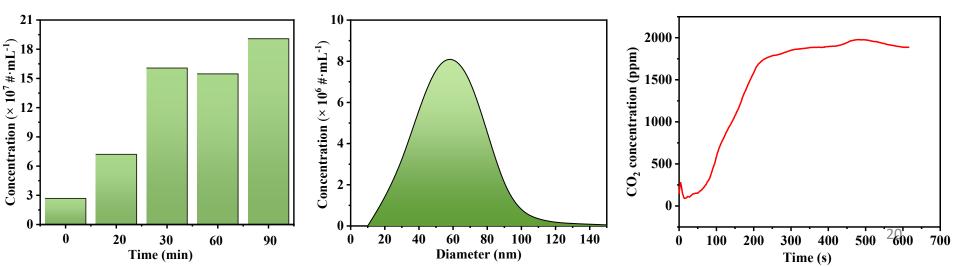
Scenedesmus HTB1 tolerates varying salinity gradients and produces carotenoids


Feng Chen and Chen team

Subtask 2.3 - Development and testing of bubblers


- Generate and optimize micro- and nano-bubbles of CO₂ dispersion;
- Determine key parameters such as bubble sizes and CO₂ flow or flux

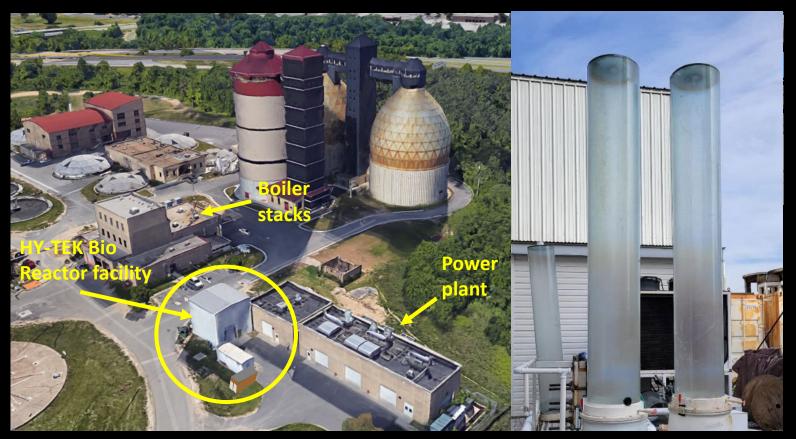
Milestone 2.3 Generate CO_2 nanobubbles with concentrations of up to 3×10^{14} bubbles·L⁻¹ and sizes ranging from 300 nm to 1 µm in diameter and microbubbles with concentrations of up to 1×10^8 bubbles·L⁻¹ and sizes ranging from 10 to 100 µm; Date: M12


Wen Zhang and NJIT team

Wen Zhang and NJIT team

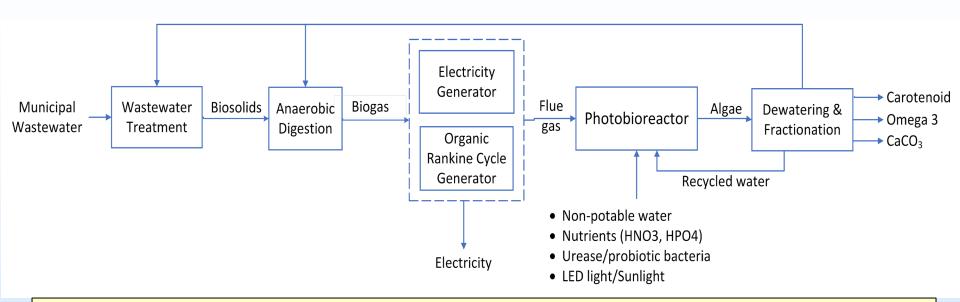
- Using pure CO₂, the observed dissolved CO₂ in the nanobubble water suspension is near 2,000 ppm, which corresponds to a partial pressure of **1.18 atm** (the injection pressure is 145 kPa or 1.43 atm).
- 2. The ambient air solubility under one atm can provide only **0.0004 atm** of the partial pressure of CO_2 . Thus, the nanobubbles of CO_2 increases the partial pressure up to 1.18 atm and resulted in nearly **3,000 times** of the CO_2 solubility under ambient air.

Subtask 2.4 - Algal Culture Improvement at the flue gas site


• Use 9-L bioreactor systems to clean flue gas with algae culture.

Subtask 2.5 - Develop the frameworks for the TEA and LCA models

• Develop frameworks of LCA and TEA models for sunlight-driven seawater and freshwater algal carbon sequestration systems.


BP1 Success Criteria: Determine the best combinations of urease and probiotic bacterial strains and bubbling mechanisms for *S. obliquus* HTB1 and *N. oceanica* IMET1 that facilitate an average productivity of $30 \text{ g/m}^2/\text{day}$ and a CUE >50% (algae biomass) or >60% (algae and CaCO₃ precipitates) in lab culture and 9-L bioreactors. Date: M18

HY-TEK Bio's Facility at the Back River Waste Water Treatment Plant

Current HTB site in operation for more than 8yrs

Robert Mroz and HY-TEK Bio Team

LCA and TEA hotspots: to identify environmental and cost hotspots and provide feedback to the team members to improve the process design

LCA metrics:

- Greenhouse gas (GHG) emissions (CO₂, CH₄, N₂O)
- Criteria air pollutant emissions (VOC, CO, NO_x, PM₁₀, PM_{2.5}, and SO_x)
- Fossil energy use
- Water consumption

TEA metrics:

- · Cost
- Return on investment
- Marginal cost of GHG avoidance

Troy Hawkins, Ed Weinberg, Udayan Singh, and Farah Naaz

Plans for future work- BP1

Milestone Title	Planned	Actual	Verification
	Completion	Completion	Method
	date	date	
Milestone 2.1: Isolate and confirm the	Month 15	N/A	Via Quarterly
identity of >5 urease-producing bacteria			Reports
and >5 probiotic bacterial strains for			submitted to
Nannochloropsis oceanica IMET1			DOE Project
			Officer
Milestone 3.2: Isolate and confirm the	Month 15	N/A	Same as above
identity of >5 urease-producing bacteria			
and >5 probiotic bacterial strains for			
Scenedesmus obliquus HTB1			
Milestone 3.3: Generate CO ₂	Month 12	N/A	Same as above
nanobubbles with concentrations of up			
to 3×10^{14} bubbles \cdot L ⁻¹ and sizes ranging			
from 300 nm to 1 μ m in diameter and			
microbubbles with concentrations of up			
to 1×10^8 bubbles \cdot L ⁻¹ and sizes ranging			
from 10 to 100 µm			

No change in the scope of work, and no extra fund requested.

- Urease effect on carbonate precipitation confirmed; further tests in progress.
- Micro-/Nano-bubble generation tests in progress; we will proceed with lab tests of seawater and freshwater cultures.
- Bioreactor parts ordered and in preparation for bioreactor tests with flue gas.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

No.	/Tasks	/Subtasks and PIs responsible for the task	Teams responsible
1.1 1.2	Project Management and Planning	 Project Management Plan (<i>Li working with all PIs</i>) Project Reporting (<i>All PIs</i>) 	UMCES is the lead on this task.
2.1, 2.2, 3.2, 3.3.	Bench-scale development of a saltwater and a freshwater system and culture microbiome optimization	system (Li and Hill)	UMCES is the lead on this task.
2.3, 3.4	Development and testing of bubblers in the lab and upscaled algal systems	 Optimization of microbubbles and nanobubbles in lab cultures (<i>Zhang</i>) Bubbler optimization at 1,000 L scale (<i>Zhang</i>) 	NJIT is the lead on this task.
2.4, 3.1	Slipstream testing of the algal carbon sequestration system at the Back River wastewater treatment plant	 Bioreactor test on site (at the wastewater treatment plant) at 9 L scale (<i>Mroz</i>) Slipstream test at 1,000 L scale (<i>Mroz</i>) 	HY-TEK Bio is the lead on this task.
4.0	Development of TEA and LCA models to evaluate and guide research and testing activities.	 Develop the frameworks for the TEA and LCA models (<i>Hawkins</i>) Perform contribution analysis, benchmarked against other conventional algae processes (<i>Hawkins</i>) 	Argonne National Lab is the lead on this task. 27

Gantt Chart

Project Schedule (Gantt chart)*

Task	2023-24				2024-26						
	BP1			*	BP2						
2.1 Develop a seawater system					1						
2.2 Develop a freshwater system					\$						
2.3 Engineer micro-/nano- bubblers				5							
2.4 Onsite lab-scale tests											
3.1 Slipstream testing at 1,000 L scale							2	7			
3.2 Optimize seawater culture									Z	3	
3.3 Optimize freshwater culture										<u></u>	7
3.4 Optimize micro-/nano- bubblers											-
4.0 LCA/TEA											
☆ Milestone ★Go-No Go											

* Start date was Feb. 15, 2023; each block represents one quarter (3-month). At the end of the first BP,

there is a Go-No Go decision point.