A highly efficient microalgae-based carbon sequestration system to reduce CO₂ emission from power plant flue gas

DE-FE0031914

 Yantao Li, Feng Chen, and Russell Hill, University of Maryland Center for Environmental Science;
 Robert Mroz, HY-TEK Bio, LLC;
 Troy Hawkins, Argonne National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Aug. 28, 2023

Project Overview

- Funding
 - DOE: \$3,000,000 and Cost Share: \$750,000
- Overall Project Performance Dates:
 - Sep. 2020 to Sep. 2023 (NCTE to Jun. 2024)
- Project Participants:
 - Yantao Li, Feng Chen, Russell Hill, University of Maryland Center for Environmental Science;
 - Robert Mroz, HY-TEK Bio, LLC;
 - Troy Hawkins, Argonne National Lab
 - DOE NETL Program Manager: Lei Hong (From Jan. 2022), Kyle Smith (May- Dec. 2021), Katharina Daniels Sep. 2020 to Apr. 2021)

Project Overview

- Overall Project Objectives

The objective of this project is to harness the power of photosynthetic microalgae to maintain a high-pH, high-alkalinity microalgal culture to create a carbon-negative system for carbon dioxide (CO_2) conversion to value-added products from power plant flue gas.

Technology Background

100 g algal biomass produced will use 183 g CO_2 .

Algal biomass for feed/biofuels.

Microalgal Carbon Capture and Biomass Production: <u>Microalgae-driven carbonate precipitation (MadCAP)</u>

 $CO_2 + H_2 \ O \rightleftharpoons H_2 CO_3 \rightleftharpoons H^+ + HCO_3^- \rightleftharpoons 2H^+ + CO_3^{2-}$ $Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3$

Adapted from Zhu and Dittrich 2016 Frontiers in Bioeng and Biotech. Mazzone et al., 2002 MARSci.2002.01.020105; DE-FC26-00NT40934; <u>http://thanhphatchem.com/</u>;

Microalgal Carbon Capture and Biomass Production: <u>Microalgae-driven carbonate precipitation (MadCAP)</u>

Adapted from Zhu and Dittrich 2016 Frontiers in Bioeng and Biotech. Mazzone et al., 2002 MARSci.2002.01.020105; DE-FC26-00NT40934; <u>http://thanhphatchem.com/</u>;

Microbial interactions in non-axenic microalgal cultures

Lin, Li and Hill. Current Opinion in Biotechnology 2021, 73:300–307

Technology Background: Proposed Technology Readiness Level

Technical Approach/Project Scope

Bench-scale development of a saltwater and a freshwater algal system (UMCES)

- Subtask 2.1; 3.1; 4.1: Saltwater algal carbon sequestration system (Li and Hill)
- Subtask 2.2; 3.1; 4.1: Freshwater algal carbon sequestration (Chen and Hill)

Slipstream testing of the algal carbon sequestration system (HY-TEK Bio)

- Subtask 2.3; 3.2; 4.2: Slipstream test on strains IMET1 and HTB1 at 500 L (Mroz)
- Subtask 3.3; 4.3: Slipstream test on algal strains IMET1 and HTB1 at 6,800 L (Mroz)

Development of TEA and LCA models to evaluate and guide (Argonne)

Subtask 2.4; 3.4; 4.4: Perform TEA and LCA analysis (Hawkins and Banerjee)

Progress- Budget Period 2 (1/1/22-3/31/23)- BP3 (4/1/23-6/30/24)

1) Bench-scale optimization of the laboratory and 500-L algal carbon sequestration system;

2) Use an iterative modification and validation process to scale up to slipstream testing of the algal carbon sequestration system at a 6,800-L scale on power plant flue gas; and

Report on updated findings of the TEA and LCA with the Monte
 Carlo uncertainty analysis and specific designed input/output templates
 for new field data.

Progress- Nannochloropsis IMET1 Lab culture with 10% CO₂/air

About 21% extra $CaCO_3$ precipitate formed (w/w; 0.55/2.6 (g/L)).

Milestone 3.1 Achieve 2 g/L biomass concentration and extra 20% carbon capture in lab cultures.

Yi-Ying Lee, Jing Wang and Li Team 11

HY-TEK Bio's slipstream testing site at the Back River Waste Water Treatment Plant

Current HTB site in operation for more than 8yrs

Robert Mroz and HY-TEK Bio Team

Progress- HY-TEK Bio 500L bioreactors

Milestone 3.2 Achieve 10-15 g/m²/day biomass productivity concentration and extra 20% carbon capture at 500 L. M30

Justin Shaw, Al Dawson, Kent Nicholson, Ed Weinberg, Carolyn Mroz etc.

Progress- *N. oceanica* IMET1 in the 500L bioreactor

N. oceanica IMET1: D0-28 grown with 5% CO_2 (boiler flue gas); D28-35 grown with air only; D31: 0.02 M NaHCO₃ added to the culture

Progress- N. oceanica IMET1 in the 500L tank

Assumption: To produce 100 g algae, 183 g CO_2 is needed; To produce 100 g $CaCO_3$, 44g CO_2 is needed; Therefore, stoichiometrically, CO_2 consumption to produce **416 g** $CaCO_3$ is equal to that to produce **100 g** algae.

Progress- N. oceanica IMET1 in the 500L tank

 CO_2 capture equivalent based on AFDW biomass productivity (Converting CO_2 captured as $CaCO_3$ into algae productivity)

Assumption: To produce 100 g algae, 183 g CO_2 is needed; To produce 100 g $CaCO_3$, 44g CO_2 is needed; Therefore, CO_2 consumption to produce **416 g CaCO_3** is equal to that to produce **100 g** algae.

Progress- Growth of S. obliquus HTB1 in the 500L bioreactor

CO₂ capture equivalent based on AFDW biomass productivity (Converting CO₂ captured as CaCO₃ into algae productivity)

Feng Chen and Chen team

Progress- Lab Microbial Analysis *Nannochloropsis oceanica* IMET1

Closely-associated prokaryotic community (0.45 µm fraction) and free-living prokaryotic community (0.22 µm fraction) of *N. oceanica* IMET1

Progress- HY-TEK Bio work progress

Working processes to rebuild the 6800 L photobioreactor at HY-TEK Bio.

Progress- HY-TEK Bio 6,800L bioreactors

Robert Mroz and HY-TEK Bio Team

Progress-LCA/TEA

Screening LCA and TEA of Full System and Focused Analysis of Key Processes

Color indicates baseline pathways, monochromatic indicates sensitivities

Troy Hawkins, Udayan Singh, and Farah Naaz

Progress-LCA/TEA

- Net emissions correspond to 68 gCO₂e/MJ in the baseline algae biofuel pathway
- This can reduce to net-negative levels as per the CO2U NETL methodology when RNG exhaust (i.e., biogenic carbon source) and carbon-neutral electricity is used 22

Technology Readiness Level at present

23

Plans for future work- BP3

Milestone Title	Planned Completion date	Actual Comple tion	Verification Method	Comments
		date		
Milestone 4.1: Achieve 3 g/L	Month 45		Oral and	
biomass concentration and extra	(06/30/2024)		written	
50% carbon capture in lab cultures			reports	
<u>Milestone 4.2:</u> Achieve 20	Month 42		Oral and	
g/m ² /day biomass productivity	(03/31/2024)		written	
and extra 50% carbon capture at			reports	
500 L				
<u>Milestone 4.3:</u> Achieve 20	Month 45		Oral and	
g/m ² /day biomass productivity	(06/30/2024)		written	
and extra 50% carbon capture at			reports	
6,800 L				
Milestone 4.4: Report on updated	Month 45		Oral and	
findings of the TEA and LCA	(06/30/2024)		written	
			reports	

Summary

- Our freshwater Scenedesmus and seawater Nannochloropsis systems are able to achieve >30 g/m²/Day AFDW biomass productivity and extra 37.8-43.9% carbon capture when grown with flue gas containing 5% CO₂ at 500 L scale for over a month (35-82 days).
- Dominant bacterial community/microbiome of the algae polyculture is stable in lab and 500 L pilot tests. Urease-producing bacteria may help precipitate more carbon.
- Updated LCA/TEA analysis shows our technology is a promising carbon capture route.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

No.	/Tasks	/Subtasks and PIs responsible for the task	Teams responsible				
1	Project Management and Planning	 Project Management Plan (All PIs) Technology Maturation Plan (All PIs) 	UMCES is the lead on this task.				
2	Bench-scale development of a saltwater and a freshwater system	 Saltwater algal carbon sequestration system (Li and Hill, UMCES) Freshwater algal carbon sequestration (Chen and Hill, UMCES) 	UMCES is the lead on this task.				
3	Slipstream testing of the algal carbon sequestration system	 Slipstream test at 500 L scale (Mroz, HY-TEK Bio, LLC) Slipstream test at 6,800 L scale (Mroz, HY- TEK Bio, LLC) 	HY-TEK Bio, LLC is the lead on this task.				
4	Development of TEA and LCA models to evaluate and guide research and testing activities.	 Develop the frameworks for the TEA and LCA models (<i>Hawkins and Banerjee, Argonne National Lab</i>) Perform hotspot analysis, benchmark against other carbon capture and biofuel processes, (<i>Hawkins and Banerjee, Argonne National Lab</i>) 	Argonne National lab is the lead on this task. 2				

Gantt Chart

Task	2020-2021					2021-2023				2023-2024					
Budget period		BP 1 (Month 1-15)		7	r	BP 2 (M 16-30)			BP3 (M 31-45)		45)				
Task 1.0 Project Management															
1.1 Project Management Plan															
Milestones 1.1	\star														
1.2 Tech Maturation Plan															
Milestones 1.2	7	22													
Task 2.0 Bench-scale development															
2.1 Seawater system															
Milestones 2.1					7	7									
2.2 Freshwater system															
Milestones 2.2					7	ſ									
2.3 Initial 500-L test															
Milestones 2.3					7	7									
2.4 Frameworks of TEA and LCA					-										
Milestones 2.4					h	(
Task 3.0 Optimization and															
slipstream test															
3.1 Lab-scale optimization															
Milestones 3.1						7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
3.2 Slipstream test at 500 L															
Milestones 3.2										7	3				
3.3 Initial 6,800-L test															
Milestones 3.3										7	7				
3.4 TEA and LCA analysis															
Milestones 3.4										Z	7				
Milestones 3.4											7				
Task 4.0 Optimization and full-scale										,					
test															
4.1 Lab-scale optimization															
Milestones 4.1															
4.2 Slipstream test at 500 L															
Milestones 4.2														7	3
4.3 Slipstream test at 6,800-L															
Milestones 4.3															Z
4.4 Frameworks of TEA and LCA															
Milestones 4.4															Z
🕱 Milestone 🤺 Go-No Go															

System Performance Data

		Measured/Current	Projected/Target			
	Units	Performance	Performance			
Algae Characteristics	1	1				
Proposed Algae Strain	-	Nannochloropsis oceanica IMET1 and Scenedesmus HTB1				
Lower Heating Value @ 25°C	i kJ/kg (dry)	I 15				
Lipid Content ¹	wt%	20-51				
Protein Content	I wt%	I 18-42				
Carbohydrate Content	wt%	8-30				
Algae Cultivation	I	1				
Method of Cultivation	-	PBR				
Water Source	1	Seawater for Nannochloropsis	Seawater for Nannochloropsis			
	1	and freshwater for Scenedesmus	and freshwater for Scenedesmus			
Pond or PBR Surface Area	m2	0.19 (500 L)	1.16 (6,800 L)			
Pond Depth or PBR Width	cm	290	586			
PBR Type ²	-	column airlift	column airlift			
Pond or PBR Volume	L	500	6800			
Nutrient Source - N	-	NO_3^- or urea	NO ₃ ⁻ or urea or sterilized chicker			
	1		manure			
Nutrient Source - P	-	PO ₄ ³⁻	PO ₄ ³⁻ or sterilized chicken			
	, 1	i	manure			
Scale of Operation – CO ₂ delivered ³	kg/hr	0.04	12-40			
CO ₂ Utilization	1	I				
CO ₂ Source ⁴	- -	Commercial CO2 and simulated	Flue gas from power plant engine			
	, 	flue gas	or boiler (BRWWTP)			
CO ₂ Content of Source Gas	mol%	6-8 (boiler) 10-12 (engine)	6-8 (boiler) 10-12 (engine)			
Impurity or contaminant processing requirements ⁵	-	clean source gas with no	clean source gas with no			
		processing	processing			
CO ₂ Processing Requirements ⁶	-	no processing	no processing			
CO ₂ Concentration after Processing ⁷	mol or wt%	6-8 (boiler) 10-12 (engine)	6-8 (boiler) 10-12 (engine)			
Delivery Method to Pond/PBR ⁸	-	Gas sparger	Gas sparger			
CO ₂ Pond/PBR Retention ⁹	%	90	>90			
Algae Productivity ¹⁰						
Peak Productivity	g/m²/day	50	50			
Annual Average Productivity	g/m²/day	32	>20			
Projected Finished Products ¹¹		(Market Value)	(Market Size)			
Product #1: Biodiesel	-	\$3/gallon	\$100 B			
Product #2: lutein and zeaxanthin	-	\$2,000/kg	\$275 M			