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Electro-conversion of CO2 to Chemicals:

Electrocatalysts

• Modular processes that can be easily coupled with renewable electricity.

• Ease to scale-up to MW or GW plants. 



Electrode Development



Electro-conversion of CO2 to Chemicals:

CO as a Key Intermediate for C2+ Products

• C-C coupling has various 

pathways, all of which involves 

CO.

• *CO has been identified a key 

intermediate for C2+ products 

formation.

• Increasing the *CO surface 

coverage enhances the C-C 

coupling kinetics according to 

the law of mass action.

Plausible C-C coupling  pathways

Zhao, Martirez, and Carter, PNAS, 2022

Garza, Bell, and Head-Gordon, ACS Catalysis, 2018



Research Objectives

1) To design and fabricate tandem electrodes to 

direct the cascade reaction of 

CO2→CO→C2H4;

2) To develop a functionally graded catalyst 

layer in the tandem electrodes to balance the 

transport of electron, ions, and reactants;

3) To explore the pulse electrolysis technology 

to boost the production yield of C2H4 and 

lower the overpotential;

4) To demonstrate the MEA-type cell integrating 

the tandem electrodes for CO2 pulse 

electrolysis.

Tandem CO2 reduction

in the gas diffusion electrode



How to Utilize the Intermediate *CO to Promote 

the Formation of C2H4?

• Realize cascade reaction CO2→CO→C2H4 in one electrolyzer to simplify the reactor design.

• Maximize the CO utilization by using a tandem electrode design.



Tandem Electrodes

• Tandem electrode design principle: optimize the Θ*CO at the Cu surface, leading to 

simultaneously maximized selectivity and productivity of C2H4 through cascade 

reaction CO2→CO→C2H4.

• Effectiveness:  segmented > layered
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What’s the role for the Ag on the conversion of 

C2+ products? 
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1) As CO concentration decreases down the length of the

segmented GDE, C2+ productivity decreases as well.

2) Segmented GDE delivers higher CO concentration and

C2+ productivity than layered GDE.

Nature Catalysis, 2022, 5, 202–211.



• Shrinking Ag CL providing more concentrated CO for C-C coupling on the Cu CL, and thus

yielding higher selectivity and productivity of C2+ products.

What’s the role Ag/Cu exposure area ratio on 

FE and current desity for C2+ products?



• Cu/Fe-N-C tandem electrode (Cu : Fe-N-C area ratio = 1 cm2 : 0.05 cm2) achieving 60%

FE of C2H4 at current density > 1 A/cm2 in a flow cell with a thin catholyte layer.

• Severe catalyst layer flooding limiting the long-term operation of tandem electrodes,

especially at current density > 500 mA/cm2.

Activity and Selectivity Stability
CL flooding

Tandem Electrode Design: synergy between Cu 

and CO-generating catalyst 



Tandem Electrode Design: enhanced gas mass

transport

• Interdigitated flow channel forces gas convection into the electrode and then exit to the outlet

channels, enhancing mass transport of CO2/CO into the catalyst layer.

• Maximum FE of C2H4 increased from 60% with serpentine flow field to ~70% with the

interdigitated flow field at a partial current density of over 750 mA cm-2 on Cu/Fe-N-C tandem

electrode.

X. Feng et al., Nature Communications, 

2011, 12, 136 .



Tandem Electrode Design: flooding issue of 

current GDE structure

• Solubility in water at 1 atm and 25 oC: CO (0.98 mM) versus CO2 (33 mM)

• CO reduction reaction (CORR) as the probe for catalyst layer flooding

• The current GDEs with structure and formulation adapted from PEMFC are prone to flooding in a 

short time, limiting the CO utilization efficacy. 

Increase mass transfer 

polarization
Decrease selectivity towards C2+

Flooding model of CL

Galvanostatic electrolysis of CORR at 400 mA cm-2 on a GDE composed of  SGL 39BB GDL and Cu CL

J. Electrochem. Soc., 2022.



Tandem Electrode Design: flooding issue of 

current GDE structure

• Flooding extends to gas diffusing layer.

• Design CL and GDL microstructures with effective water management is the focus of 

future work in order to increase the performance and stability of tandem electrodes.



Pulse Electrolysis



Project Progress: Pulse Electrolysis

Control pulse potential: CO supply from CO-generation catalyst layer in the tandem electrode
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Project Progress: Pulse Electrolysis
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Pulse Electrolysis: enhancement of C2H4

selectivity and productivity on Cu GDE

J. Electrochem. Soc., 2022.
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• Pulse electrolysis 

further promotes 

Faradaic efficiency and 

partial current density 

of C2+ and C2H4 on 

tandem SGDE.

• 66% FE of C2H4 at jC2H4

> 1100 mA cm-2

Cu/Fe-N-C tandem segmented GDE (SGDE)
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Integration in a MEA cell: pulse electrolysis + 

tandem SGDE

Cu/Fe-N-C Tandem SGDE + Pulse Electrolysis + MEA Cell with a Serpentine Flow Field 

• MEA cell shows lower selectivity of C2H4 and compared to flow cell due to the change of GDE surface 

micro-environment (e.g., local pH and water saturation in the GDE). 

• Pulse electrolysis compensates the decline In the MEA cell, prompting the FE of C2H4 to 59% at a C2H4 

partial current density of 340 mA cm-2. 



LCA/TEA Analysis
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1. We completed a cradle-to-gate life cycle assessment of
assembling and operating an electrochemical cell to
perform conversion of previously captured carbon dioxide
(CO2), followed by product separation

2. The goal is to investigate the the environmental impact
and predict ways of decreasing carbon emissions for
manufacturing and using carbon capture and utilization
(CCU) technologies

3. We successfully built a model to investigate the
environmental impact as a function of number of
operation parameters.

4. We envisage that this LCA study will provide guidance and
information regarding aspects of CCU technologies which
may require optimization under the environmental point
of view.

The LCA model

Life Cycle Assessment of CO2 Conversion
Goal and motivations



1. Stability/durability and operation variables 
(current density or cell voltage) have high 
impact on the carbon emissions.

2. The optimal parameters include stable 
operation for at least 4,000 hours at (ultrahigh) 
current densities (0.50 - 1.00 A cm-2).

3. Through use of renewable energy sources zero 
carbon emissions may be achieved only if high 
cell performance conditions are met. 

4. The cumulative carbon emissions were 
predicted during the entire life cycle of the 
system (4,000 hours), while modelling cell aging 
and corresponding decline in performance. 
Here, the use of renewable energy is of 
outmost importance to achieve climate change 
mitigation.

Life Cycle Assessment of CO2 Conversion
Results and Discussion
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1. Reducing the area-specific resistance of an 
AEM reactor and achieving a high selectivity 
for ethylene (>50%)  have the potential to 
significantly lower the product cost.

2. Operation of carbon capture unit allows 
reduction in production cost up to ~30%.  

3. Cost of equipment is not negligeable and can 
contributes up to ~28% to the overall 
production cost (60% of which is attributed to 
the AEM) 

4. With renewable electricity of $0.02-0.04/kWh, 
competitive production costs of ethylene are 
achievable.

5. From LCA studies, when renewable energy is 
used, conversion of CO2 to ethylene yield to 
negligible environmental impact and allows 
achieving negative emissions.

Equipment cost & Current density

Technoeconomic Analysis of CO2 to Ethylene
Results and Discussion
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1. Total profit for production of
ethylene using the modelled set-up
for CO2 capture and electrolysis,
accounting for degradation of cell
performance over operation time.

2. The profit is dictated by the energy
consumption and its cost, as well as
the projected market price of
ethylene.

3. For cost of electricity 0.01$/kWh,
positive value of the total profit are
observed at competitive prices of
ethylene, when the set-up operates
for longer then 20,000 hours

0.02$/kWh 0.01$/kWh

Technoeconomic Analysis of CO2 to Ethylene
Profit Analysis



Summary and Major Accomplishments

• Established the design principle of tandem electrodes

• Achieved 70% selectivity of C2H4 at 1 A cm-2 current density on segmented electrodes in the 
flow cell

• Developed pulse electrolysis protocol involving two reduction potentials and applied pulse 
electrolysis to tandem electrodes

• One formal patent for tandem electrodes was filed.

• Develop advanced Cu-based catalysts to increase the selectivity to C2H4

• Optimize the microstructure of catalyst layer to increase the CO flux and CO utilization 
efficiency in the tandem electrodes

• Intensify the process in the MEA cell

• Perform final TEA and LCA
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