

DE-SC0019664

Yue Xiao Advanced Cooling Technologies, Inc. 08/2023

U.S. Department of Energy National Energy Technology Laboratory 2023 Carbon Management Project Review Meeting

Project Overview (1/2)

- Funding and Performance Dates
 - Source: DOE SBIR
 - Phase I: \$149,998 (02/2019 11/2019)
 - Phase II: \$1,049,923 (04/2020 04/2022)
 - Phase IIA: \$1,149,997 (04/2022 04/2024)
- Project Participants
 - Dr. Yue Xiao, Dr. Jay Uddi, Dr. Chien-Hua Chen (Advanced Cooling Technologies, Inc.)
 - Prof. Jonas Baltrusaitis (Lehigh University)

Project Overview (2/2)

Overall Project Objectives

• Low-temperature syngas production through plasmaassisted methane reforming

 $CO_2 + CH_4 = 2H_2 + 2CO$

 $CO_2 + CH_4 + H_2O \rightarrow xH_2 + CO, x=1-3$

- Improve reactor performance
- Evaluate coke formation and decoking techniques
- Plasma physics modeling
- Scaling analysis and scaled-up reactor design
- Industrial process flow analysis and TEA

Outline (1/1)

- Background
- Major Progress
 - New Stacked Wire Dielectric Barrier Discharge (SWDBD) reactor design
 - Plasma chemistry modeling
 - Plasma-catalysis methane reforming and decoking tests
 - Industrial Flow Analysis
- Future Work
- Summary

Background (1/2)

Syngas (CO+H₂): critical mid-product

H ₂ :CO Products Ratio	
≤1 Ethanol	
~2 Methanol → Acetic Acid, Ethylene-Propylene, et	c.
≥2 Fischer-Tropsch Process → Wax, Gasoline, etc.	
≥50 Hydrogen	

Hernández et al., Green Chem., 19 (10) 2326-2346 (2017).

Current mainstream: Steam Methane Reforming (SMR)

 $CH_4 + H_2O \rightarrow 3H_2 + CO, \Delta H=206 \text{ kJ/mol}$

• High H₂/CO ratio: 3-5

Alternative: Dry Methane Reforming (DMR) or Bi-Reforming

CH₄ + CO₂ → 2H₂ + 2CO; Δ H=247 kJ/mol H₂O + CH₄ + CO₂ → XH₂ + CO; 1<X<3

- CO-rich syngas; Consumes CO₂
- Problems:
 - High temperature: 700 °C –900 °C
 - <u>Coking</u>: deactivates catalyst, reformer clogging

Background (2/2)

Plasma-Assisted Dry/Bi Methane Reforming (PADMR/PABMR) and catalyst decoking

- Non-thermal plasma → Lower temperature reactions
- High energy electrons enables unique reaction pathways \rightarrow Coke reduction
- Synergistic effects of plasma-catalysis reactions
- Dielectric barrier discharge (DBD) plasma adopted

Concept (1/1)

Test Setup

MFC: Mass flow controller; GC: Gas Chromatography; MS: Mass Spectroscopy

Plasma-Assisted Methane Reforming

- Cylindrical DBD plasma reactor in Phase I and Phase II •
- Discharge gap l_g : 0.5–5 mm for packed bed and catalyst loading
- Additional heating and insulation

Progress (1/12): Novel Plasma Reactor Design

Recap: Cylindrical Reactor in Phase II

- 1. Reduced Gap size l_g : Electric field $V/l_g \uparrow$
- 2. "Burst Mode" power

3. Eliminate secondary surface discharge
 → Energy Waste ↓

• Phase II: 89% higher than Phase I results at room temperature.

Progress (2/12): Novel Plasma Reactor Design

Creating Atmospheric Pressure Glowing Discharge (APGD)

Snoeckx & Bogaerts, Chem. Soc. Rev. 46, 5805-5863 (2017).

APGD: Maintain homogeneous glow or filamentary glow without vacuum condition

Progress (2/12): Novel Plasma Reactor Design

Creating Atmospheric Pressure Glowing Discharge (APGD)

APGD: Maintain homogeneous glow or filamentary glow without vacuum condition

Additional Design Challenges:

- Catalyst compatible
- Easy to scale up

Stacked Wire Dielectric Barrier Discharge (SWDBD) reactor:

- Generate glow discharge at 1 atm
- Uniform gas treatment → energy efficiency ↑

Progress (3/12): Novel Plasma Reactor Design

- Eliminate the discharge space at the contact point
- Create an area with high electron energy

- Staggered electrode pattern
- Easy to load catalyst
- Easy to scale up compared to cylindrical DBD

Progress (4/12): Novel Plasma Reactor Design

SWDBD vs. Cylindrical DBD:

- Same electrode spacing (1.5 mm)
- Same Reactor volume
- Same plasma power
- ~90% performance improvements
- Expect to further increased conversion with catalyst or with reduced electrode spacing
- Currently testing different design configurations

Progress (5/12): Plasma-Assisted Reaction Modeling

Aim: Utilize the plasma chemistry modeling to study and optimize the SWDBD reactor

- Starting with 0D (spatial uniform) CO2 splitting, eventually move to 2D Dry/Bi-reforming simulation
- Currently completed preliminary SWDBD modeling with simplified 2D model
- Simulations performed in COMSOL Multiphysics

Progress (6/12): Plasma-Assisted Reaction Modeling

0D chemistry set calibration

Reaction	Rate coefficient
$e^-+CO_2 \rightarrow CO_2^++2e^-$	$f(\sigma)$
$e^{-}+CO_{2}\rightarrow CO+O+e^{-}$	5.8×10^{-11}
$e^{-}+CO_{2}\rightarrow CO+O^{-}$	7.0×10^{-12}
$e^{-}+O_{3}\rightarrow O+O_{2}+e^{-}$	2.0×10^{-9}
$e^{-}+O_{2}\rightarrow O+O+e^{-}$	2.0×10^{-9}
$e^++O_2 \rightarrow O^+O^-$	4.0×10^{-11}
$e^{-}+O_{2}+M \rightarrow O_{2}^{-}+M$	3.0×10^{-30}
$O^-+CO \rightarrow CO_2+e^-$	5.5×10^{-10}
$O^-+O_2 \rightarrow O_3+e^-$	1.0×10^{-12}
$O^{-}+O_{3}\rightarrow O_{2}+O_{2}+e^{-}$	3.0×10^{-10}
$e^{-}+CO_{2}^{+}\rightarrow CO+O$	6.5×10^{-7}
$O_2^- + CO_2^+ \rightarrow CO + O_2 + O$	6.0×10^{-7}
$O+O+M \rightarrow O_2+M$	$5.2 \times 10^{-35} \exp(900/T[K])$
$O+O_2+M \rightarrow O_3+M$	4.5×10 ⁻³⁴ (<i>T</i> [K]/298) ^{-2.70}
$O+O_3 \rightarrow O_2+O_2$	$8.0 \times 10^{-12} \exp(-17.13/T[K])$
$O+CO+M\rightarrow CO_2+M$	$1.7 \times 10^{-33} \exp(-1510/T[K])$
$O_3+M \rightarrow O_2+O+M$	$4.1 \times 10^{-10} \exp(-11430/T[K])$

Aerts, et al., Chem. Sus. Chem. 10, 02818 (2015).

- 60 ns single pulse discharge, P_{avg} =40 W. Gas flow 18.6 sccm
- CO₂ ionization replaced with energy-dependent model
- · Good agreement particularly in electron density

Progress (7/12): Plasma-Assisted Reaction Modeling

- 0D have good agreement with experiments in CO generation and CO₂ conversion
- Conditions in 1D modeling: Continuous AC (5.2 kV, 30.8 kHz), 20 sccm CO₂ flow rate.
- 1D: Very good power consumption agreement with experiments, reasonable agreement in species density within limited computational time

Progress (8/12): Plasma-Assisted Reaction Modeling

2D SWDBD Modeling

- 3D modeling is extremely computational heavy
 → Simplified 2D model
- Other dimensions same as the experiments
- Small gap for easier convergence
- ~8 days to simulate two periods (5 kV, 30 kHz), 12-Core workstation

Progress (9/12): Plasma-Assisted Reaction Modeling

2D SWDBD Modeling: high energy layer transits from one electrode to another

Progress (9/12): Plasma-Assisted Reaction Modeling

2D SWDBD Modeling: high energy layer transits from one electrode to another

Progress (10/12): Plasma-Assisted Reaction Modeling

- A uniform layer with high-electron energy formed at the • surface of dielectric barrier, connected by a transitioning discharge towards the outside
- Compared with 2D modeling on packed beds: More ٠ uniform high electron energy layer

Van Laer & Bogaerts, Plas. Sources Sci. Tech. 25, 015002 (2016).

1E+19 **SWDBD**

Comparison: SWDBD and Cylindrical DBD

- Same power, discharge gap, and frequency
- Generally 5x to 10x higher in electron density and related species

Progress (11/12): Catalyst testing for Bi-Reforming

Continuous development and testing of catalyst:

- H₂:CO=1.7:1
- CH₄ 95% conversion, CO₂ 26% conversion
- CO₂ cycling cost further reduced

- Net coke reduction at low Steam-to-Carbon ratio (S:C)=0.81 vs. 0.90 in industry
- Testing combined with SWDBD in progress

Progress (12/12): Industrial Process Flow

Currently Developing a bi-reforming process flow with an SMR co-location for CO₂ utilization

Utility, Material Inputs

- Compared to our work that stops at Syngas last year, sequential methanol synthesis is added to further evaluate the economical viability
- Various energy sources will also be simulated

Summary (1/1)

- SWDBD reactor was build and tested for higher conversion
- 2D model developed for SWDBD and shows higher reaction rates
- Plasma-assisted bi-reforming provides syngas with suitable composition and excellent coke reduction
- Industrial process design now considers sequential chemical production using syngas

Future Plan (1/1)

- Continue the SWDBD optimization, modeling, and testing
- Continue the catalyst tests and decoking evaluation
- Test with simulated impurities
- Scaled-up system build
- Detailed techno-economic analysis for bi-reforming process

Acknowledgement

US Department of Energy SBIR Program DE-SC0019664 Program Managers: Dr. Akhil Sathish, Dr. Lei Hong.

Prof. Jonas Baltrusaitis Dept. of Chemical Engineering, Lehigh University

THANK YOU!

Backup

Homogeneous DBD (APGD) in Ar/acetylene

(a) DBD in pure Ar, (b) DBD in Ar/CH₄, (c) APGD in Ar/C₂H₂

M. Eliáš et al., J. Appl. Phys. 117(10) (2015) 103301