A Pressure-Swing Process for Reactive CO₂ Capture and Conversion to Methanol through Precise Control of Co-Located Active Sites in Dual Functional Materials (FWP-FY21-RCC-LAB-CALL)

Anh To

National Renewable Energy Laboratory (NREL)

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 28 – September 1, 2023

Project Overview

Overall Project Performance Dates: Oct 1, 2021 – Sept 30, 2024

- \$2,670k over 3 years
- Lead DFM Characterization
 - Wilson McNeary
- Lead performance testing for CO₂ to MeOH
 - Anh To
- Lead process modeling, techno-economic and life cycle analyses (TEA, LCA)
 - Martin Jonathan
- Project Management
 - Anh To

- \$283k over 3 years
- Lead synthesis of dualfunction materials (DFMs)
 - Prof. Al Weimer
- Atomic layer and molecular layer deposition (ALD, MLD)
- Assist DFM characterization

- \$35k in year 3
- Assist technology maturation for DFM scalability via ALD/MLD
 - Arrelaine Dameron
 - Staci Moulton

Task 1: DFM Synthesis & Characterization Task 2: RCC performance evaluation Task 3: Process modelling & scale-up

Project objective

- This project will design and develop tailored dual-function materials (DFMs) and the accompanying pressure-swing process for reactive capture and conversion (RCC) of CO₂ to directly produce methanol (MeOH)
- This process targets deployment at a natural gas-fired power plant

How the chemistry works

2-step capture-convert chemistry

- Amine or metal oxides for binding and activating CO₂ by formation of surface intermediates
- Metallic site for subsequent hydrogenation of captured CO₂ (or intermediates) to products
- Metallic sites chosen to favor MeOH production (e.g., Pd, Cu)

Key Challenges

- Capture capacity and efficiency
- Hydrogenation activity in the presence of basic sites
- Stability in the presence of contaminants (O₂, moisture, etc.)
- Selectivity to MeOH

How the process works

- Multi-bed capture-conversion system
- ✤ T or P swing to optimize product formation.

Key Challenges

- Capture AND conversion rates cycle time dictates production rate
- Separations and purity of MeOH product
- Ability to partially recycle product stream

Unique aspects of this project

Materials Chemistry

• Precise *control* of base and metal sites

Catalysis

- T & P swing reactor to achieve high conversion efficiency and product selectivity
- Avoids high-T costs compared to methanation (>400 °C): capex, opex, low product value

Process Design, TEA and LCA

- CO₂ conversion step using renewable H₂
- HOPP tool to optimize on-site renewable
 H₂ production
- Modular process design to match energy demand and availability

Advantages of RCC to MeOH

Why an RCC approach at gas-fired power plants?

□ Carbon capture rate matches well with RCC scale (0.47 MMT_{CO2}/year/plant) → Does not require a "giant" first RCC installation

Can equal current annual production of renewable MeOH (0.2 MMT/year) with the 1st installation

Experimental Design

DFM Synthesis & Characterization

- 3 groups of DFM have been investigated:
 - Amines on Pd-deposited SiO₂ (solution phase / MLD)
 - Alkali / Alkaline modification of CZA (commercial MeOH synthesis catalyst)
 - Alkali / Alkaline modification of Zn-Al mixed oxides (in-house synthesized)
- Structural and active site characterization (H₂ chemisorption)
- CO₂ adsorption performance: chemisorption and thermogravimetric analysis
- Binding geometries of CO₂ (in situ DRIFTS)

RCC Evaluation

- 0.5 1.0 g-scale single-bed system for the 2-step capture-convert process
- T & P swing reactor to achieve high conversion efficiency and product selectivity
- Tailored gas compositions and ability to study the effects of impurities in laterstage R&D

Integrated TEA and LCA framework

- RCC process on Aspen
- CO₂ conversion step using renewable H₂
- HOPP tools to optimize on-site renewable H₂ production

Project schedule & Key milestones

Milestones at 6-month intervals (8 total over 36 months)

- 03/22: Synthesize and characterize at least 12 first-generation DFMs
- 12/22: Evaluate RCC performance of DFMs at bench scale, targeting 80% MeOH selectivity
- 06/23: Achieve stable RCC performance over 20 cycles
- 06/23: Build initial process model with TEA, LCA
- 12/23: Optimize RCC performance to achieve TEA informed performance metrics (including DFM design and RCC process conditions)
- 06/24: Evaluate best performing DFM(s) for 100 RCC cycles
- 06/24: Identify critical hurdles to DFM and process scale-up
- 09/24: Final report with process model, TEA, LCA
- Success Criteria: Go/No-Go Decision Points
- 03/23: Using TEA and LCA, determine performance metrics needed to achieve favorable carbon intensity and economics versus baseline methanol production with and without CCS. Achievable performance results in a 'go'.
- 03/24: Demonstrate stability over 100 cycles. 90% of original activity 9 results in a 'go'.

Risks and Mitigation

Risk	Mitigation
DFMs do not remain stable	Utilize multiple amine precursors for MLD with previously-
under repeated reaction	demonstrated stability under relevant temperatures. Test
cycles.	stability of top-performing DFMs under simulated flue gas
	containing oxygen, water vapor, and impurities.
Sufficient catalytic activity	Examine multiple synthetic approaches of DFMs and a range
and selectivity to	of candidate metal species (Cu, Pd, Ru) in BP1.
methanol is not obtained	Expand operation conditions (increase reaction temperature
under proposed range of	and/or pressure) of the reactive conversion of adsorbed CO_2 .
operating conditions.	
Mismatch in kinetics	Tuning basic/metallic ratio of the catalysts to adjust rate of
between CO ₂ capture and	CO ₂ capture and reactive desorption steps.
reactive desorption steps	
Proposed process does not	Engage TEA team early in BP1 to evaluate high-performing
meet carbon intensity and	DFMs in TEA/LCA and make adjustments in synthesis if
economic metrics in	necessary.
TEA/LCA.	10

Preparation & characterization of Alk/CZA DFM for RCC

Modification with Ca increased strong CO₂ adsorption moderately

Modification with K led to significantly increase in CO₂ adsorption capacity

Other metals are being investigated: Na, Sr, Ba

Preparation & characterization of Alk/CZA DFM for RCC

Μ

0

12

M

M

M

Modification with Ca increased strong CO₂ adsorption moderately, but did not affect binding geometry

Modification with K led to significantly increase in CO₂ adsorption capacity and binding geometry

□ Other metals are being investigated: Na, Sr, Ba

T & P swing RCC process

RCC performance

Each material was run for 5 RCC cycles

Products H_2 Reactive Desorption Purge Adsorption CO₂-free 1% CO2/He, 100 sccm, 1 hour ·100°C, atm P Ads ·He, 100 sccm, 1 hour 100°C, atm P Pura Pressurize to 30 bar in 100 sccm H₂ Ramp to 250°C and hold 2 h Reactive Depressurize to atm and hold 1 h Des. He, 100 sccm, 1 hour Cool down to 100°C, atm P Coo

Experiment was performed on Micromeritics Effi reactor system

□ Ca/CZA only improved capture capacity, while maintain similar adsorbed CO₂ conversion → moderate increase in MeOH productivity

□ K/CZA has highest capture capacity, conversion of adsorbed CO₂ and MeOH selectivity → 4.5x increase in MeOH productivity

DFM stability testing

K/CZA exhibited deactivation during the first 10 RCC cycles, then activity was stabilized.

RCC process model

AspenPlus process model

- utilize renewable H2 supply for the reaction
- Separation and partial recycle of product stream is also studied
- utilize initial RCC performance data with CZA to generate inputs for TEA and LCA framework

Framework for TEA & LCA study

ASPEN model of NREL RCC process to provide H₂ consumption requirement

- Adds-in H2 cost optimization via **HOPP**: Hybrids Optimization and Performance Platform
- □ Iterates over different wind/solar hybrid plant designs to minimize electricity (~ H_2) cost.
- □ RCC process near existing large NGCC plants (>200 MW) → reduce electricity & H₂ 16 transport cost.

RCC vs. baseline technologies

- Baseline CO₂ hydrogenation to MeOH process:
 - CRI benchmark process
 - Use same CO₂ source, but CO₂ must be purified & compressed
 - Process performance data from literature TEA studies
- Similar H₂ source & purity, but different amounts for each technology
- TEA comparison: levelized cost of MeOH (LCOM)
- LCA comparison: carbon intensity of MeOH production

TEA comparison

RCC technology has advantage of lower CAPEX and CO2 cost

But the cost for H₂ and catalyst are significantly higher, due to:

- Low CO₂ adsorption capacity
- Low methanol productivity
- Large H2 loss in a once through process

Partial recycle of product stream drives down cost significantly

- Improve MeOH productivity by further conversion of unreacted CO and CO₂ (from 14 to 28 µmol/g-cat) → reduce catalyst cost
- Reduce H₂ consumption 18

Strategies to improve competitiveness of RCC technology

Reduce H₂ consumption of RCC process is most effective to reduce LCOM

HOPP tool to identify location for hybrid plants

- Scouted sites near all existing 500 MW+ NGCC plants in the eastern US
 - Excluded the west H₂O scarcity
- H₂ generated by new wind/solar hybrid plants built near existing NGCC plants
- Calculates wind/solar ratio to minimize Hydrogen cost
- Metric: Levelized Cost of MeOH (LCOM) [\$/kg]
 - Color of circle = LCOM
 - Location of circle = Existing NGCC plant
- Plant locations in Oklahoma are the most competitive

Future plans

- Optimize RCC performance to achieve TEA informed performance metrics and improve DFM stability (including DFM design and RCC process conditions, including recycle of product stream)
- Evaluate effects of contaminants (O₂, water vapor) to RCC performance, especially stability
- Engage ForgeNano in evaluating scale-up ability of the RCC technology
- Seeking strategic partnerships and co-operative R&D opportunities with methanol producers looking to reduce carbon intensity and grow the bio-methanol market (i-Corp program)
 21

Summary

- Modification of CZA by metal impregnation enable RCC to produce MeOH
- □ Group 1 metal has largest impact to CO₂ capture capacity and geometry of adsorbed species → most impact to RCC performance
- Process modeling and TEA indicate that RCC to MeOH can be competitive to state-of-the-art CO₂ hydrogenation technology

Appendix

- Organization chart
- Gantt chart
- LCOM calculation
- Details RCC process description and results

Organization Chart Task Structure and Key Personnel

A Pressure-Swing Process for CO₂ RCC to Methanol through Precise Control of Co-Located Active Sites in DFMs

Task 1: DFM Synthesis and Characterization

Task Leaders: Wilson McNeary (NREL) and Alan Weimer (CU) *Key Personnel*: Susan Habas (NREL), Hailey Loehde-Woolard (CU)

Task 2: RCC Evaluation Task Leader: Anh To (NREL) Key Personnel: Martha Arellano-Trevino (NREL), Wilson McNeary (NREL)

Task 3: Process Modeling and Scale-up

Task Leader: Jennifer King (NREL) *Key Personnel*: Jonathan Martin (NREL), Eric Tan (NREL), Staci Moulton (FN)

Task 4: Project Management and Planning

Task Leader: Anh To (NREL)

Key Personnel: Dan Ruddy (NREL), Alan Weimer (CU), Arrelaine Dameron (FN)

Gantt Chart

			Project Year/Quarter					
Task Name	Assigned Resources	0/Q4	1/Q1 1/Q	2 1/Q3 1/Q4	2/Q1 2/Q2	2/Q3 2/Q4	3/Q1 3/Q2	3/Q3 3/Q4
Task 1.0 - DFM Synthesis and	Wilson McNeary;				.		L	
Characterization	Alan Weimer							
Milestone : DFM synthesis and	Wilson McNeary;		м					
characterization	Alan weimer							
Milestone : DFM performance in RCC	Wilson McNeary; Anh To			м				
Milestone : Demonstrate stable RCC	Wilson McNeary;							
performance under practical conditions	Anh To							
Task 2.0 - RCC Evaluation	Anh To			>				
Milestone : DFM performance in RCC	Wilson McNeary; Anh To			М				
Milestone : DFM stability	Anh To				м			
<i>Milestone</i> : RCC process evaluation with simulated flue gas	Anh To					м		
Milestone : Demonstrate stable RCC	Wilson McNeary;						54	
performance under practical conditions	Anh To						IVI	
Task 3.0 - Process Modeling and Scale-up	Dan Ruddy							
Milestone : Initial TEA/LCA model	Eric Tan				м			
Milestone : Identify critical hurdles	Arrelaine Dameron; Dan Ruddy						м	
Milestone : Final report	Dan Ruddy							м
Task 4.0 - Project Management and Planning	Dan Ruddy							

Milestone 3b: Initial TEA/LCA model (Q3-2023)

Build AspenPlus process model incorporating renewable H2 production, and utilize initial RCC performance data to generate an initial TEA and LCA.

TEA/LCA framework:

TEA uses a fixed charge rate levelized cost calculation:

LC = (FCR * TCC + FOC) / AP + VOC

- LC: Levelized Cost [\$/kg]
- FCR: Fixed Charged Rate (7.07%)¹
- TCC: Total Capital Cost = Total As-Spent Cost (TASC) [\$] = CAPEX
 - TASC = Total Overnight Cost (TOC) * 1.093¹
- FOC: Fixed Operating Cost [\$/yr] = OPEX_{fixed}
- AP: Annual Production [kg/yr]
- VOC: Variable Operating Cost = OPEX_{variable}

¹For real costs, 3-year TASC recovered over 30 years, as per NETL Quality Guidelines for Energy System Studies, https://www.osti.gov/ biblio/1567736

- For LCA:
 - Carbon intensity of each subprocess (e.g. kgCO2e/kgH2) is found
 - Multiplied by the ratio to the final product (e.g. kgH2/kgMeOH)
 - This produces components of kgCO2e/kgMeOH for each subprocess
 - Components of each subprocess are summed together to produce final cradle-to-gate carbon intensity of methanol

T & P swing RCC process

Experiment was performed on Micromeritics Effi reactor system

CO₂ react with freshly reduced CZA surface forming CO

- □ Complete purge out of gaseous CO₂ before reactive desorption step → reaction of adsorbed CO₂
- □ Product during high P hydrogenation: MeOH, CO
- Product during low P hydrogenation: CO

27

RCC performance of DFMs

□ K/CZA has highest capture capacity, conversion of adsorbed CO₂ and MeOH selectivity → 4.5x increase in MeOH productivity

□ Ca/CZA only improved capture capacity, while maintain similar adsorbed CO₂ conversion → moderate increase in MeOH productivity