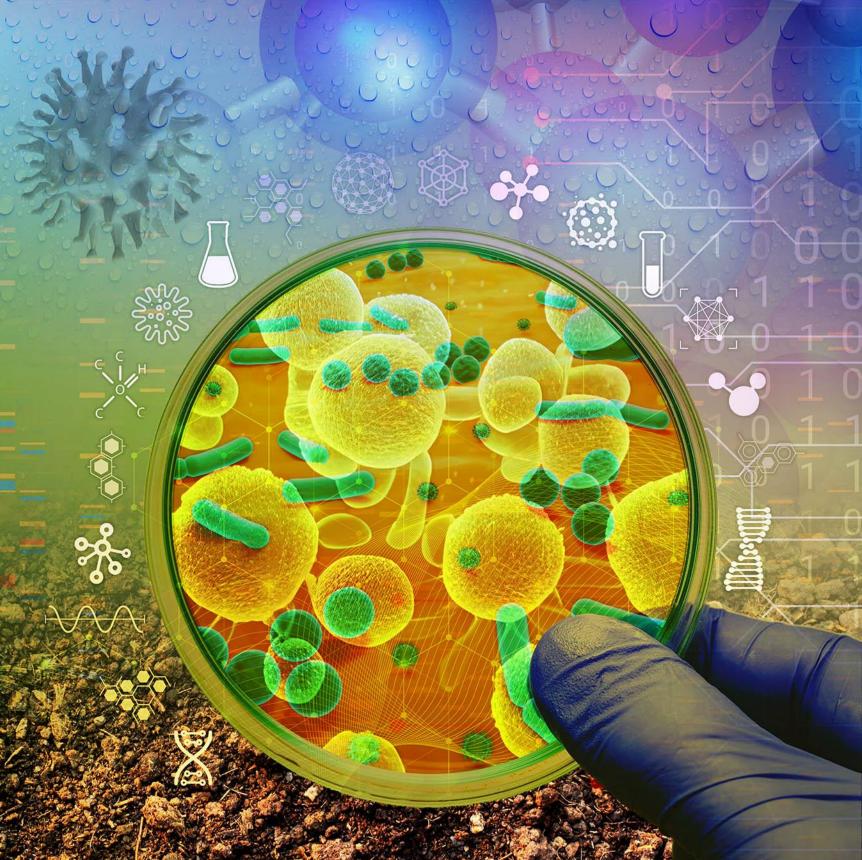


Integrated Capture and Conversion of CO₂ into Materials (IC³M): Pathways for Producing CO₂-Negative Building Composites


Satish K. Nune

David J Heldebrant

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 28 – September 1, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

Project Budget Overview

36-month Effort

- BP1 09/30/2022,
- BP2 10/1/2022 09/30/2023
- BP3 10/1/2023 09/30/2024.

DOE: \$2.7M in Federal funds

• (FY1 \$841K, FY2 \$980K, FY3 \$885K)

Cost Share: \$540K, SoCalGas

Flavio da Cruz

Ethan Simonoff

Siari Sosa

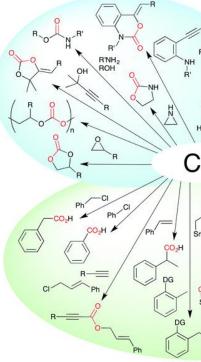
Ron Kent

Aditya Nittala

Yelin Ni

Jose Ramos

Francesca Pierobon



Lesley Snowden-Swan

Integrated Capture and Conversion of CO₂ into Materials (IC³M); A Multi-Product Platform for CCUS

Our Vision: To make a CO₂ capture unit a conversion plant like Shell's Pearl GTL facility, making *materials from CO*₂. carbonates and carbamates

Near term targets

Pacific

Northwest

carbon-neutral fuels and chemicals: CH_3OH, CH_4

Intermediate term targets

carbon-negative building materials: CO₂LIG

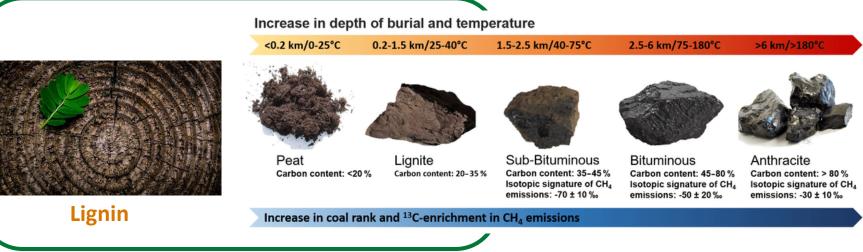
Bricket et al. Chem. Sci., 2022,13, 6445-6456

reduction of CO CO_2

carboxylations

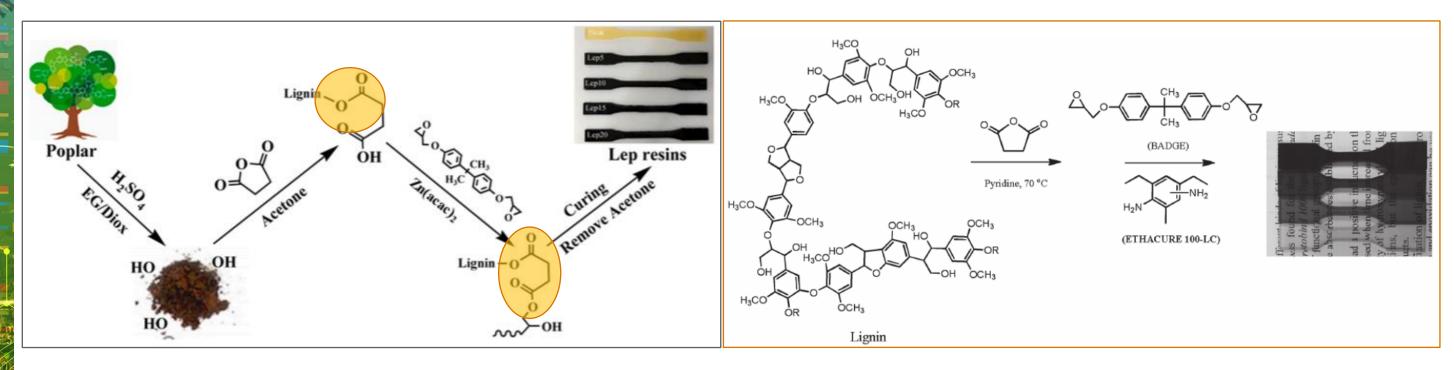
Long term targets Mineralization materials: $CaCO_3$ or MgCO₃

Project Goal: Negative-Emission Composites


Large-volume biopolymers may be large volume CO₂ sinks, while being economically viable.

- in the US per year.
- Annual \$2.8 billion market in US.
- Made from wood flour (shavings) and plastic (~50 wt.% each).

- Lignin is complex organic polymer that forms key structural materials in the support tissues of most plants.
- Lignite is a combustible sedimentary rock formed from naturally compressed peat.



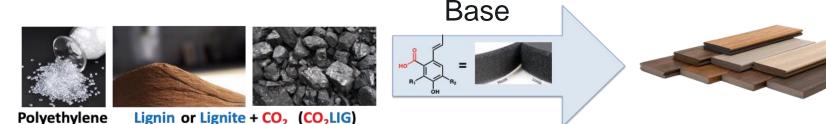
3.55 billion linear board feet of synthetic decking

Lignin (Lignite) Filler Requires Upgrading

Lignin and lignite are strong, cheap, chemically durable filler materials, but they cannot bind well in polymer matrixes, requiring chemical modification.

- Currently a co-additive such as Maleic Anhydride Polyethylene (MAPE) is added
- Carboxylation achieved on phenolic hydroxyls instead on aromatic backbone. C-O bonds are not very stable undergo hydrolysis.

Addition of additives add cost and complexity to composite manufacturing


European Polymer Journal 150 (2021) 110389

Upgrading Lignin (Lignite) via CO₂ Fixation

Pacific Northwest

CO₂ can provide the "Velcro" to help lignin and lignite bind strongly to polymer matrixes.

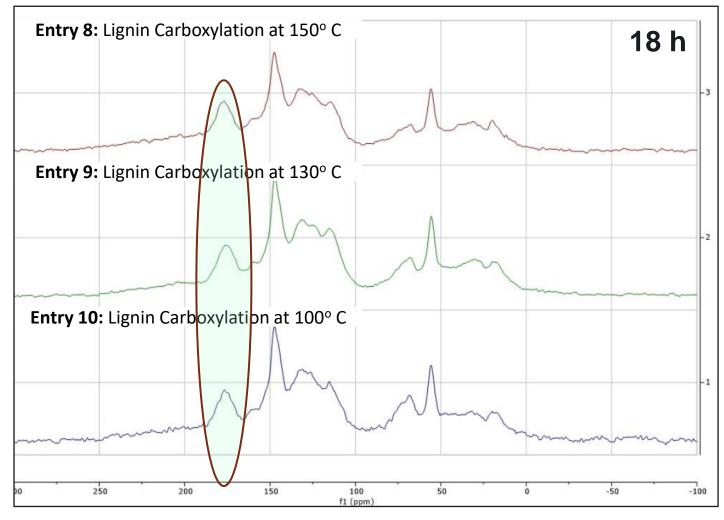
OH OH Ο 1. NaOH **Kolbe-Schmidt Reaction** 2. CO2 ЮH 3. Heat 4. Water

- Upgrading lignin (with CO_2) results in chemically durable composite fillers (C-C bond, utilizes CO_2 in its entirety)
- With 5 wt. % carboxylation & 50-70 % filler ratio for producing Lignin-Polymer composites, we could sequester about 250 thousand metric ton/year
- Equivalent to emissions from 54,000 cars/year in the US / 1.86 M cars/year globally (4.6 metric ton CO₂/car/year, from EPA)

Production of Salicylic Acid for Aspirin

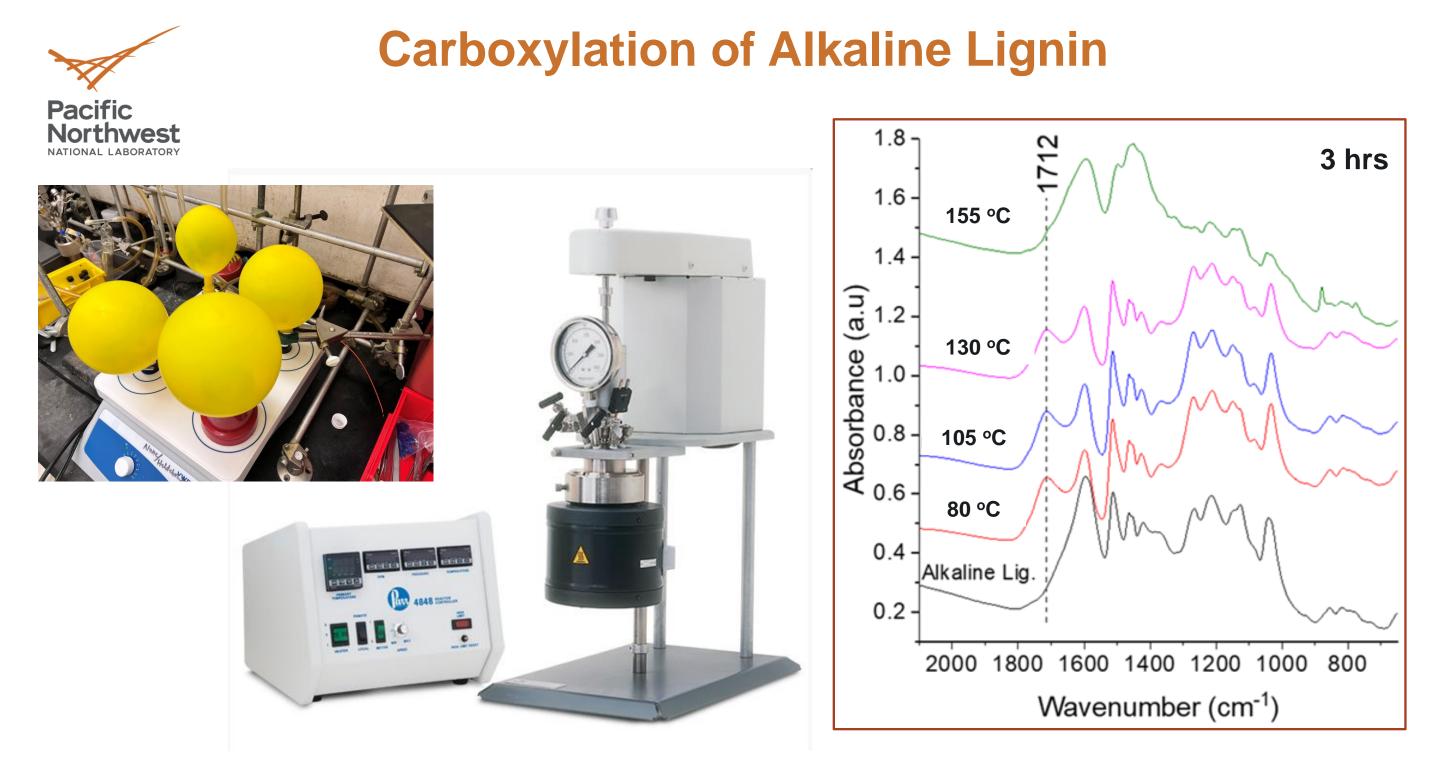
Carboxylation of Lignin and Lignite

> Achieved carboxylation on lignin and lignite using NaOH/ DBU.


Northwest

Pacific

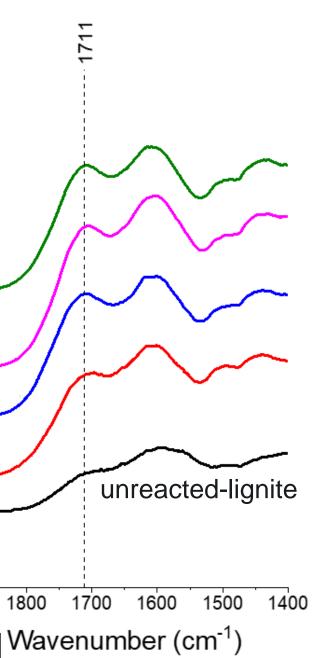
Carboxylation of Sodium Lignin sulfonate


Lignin (Sodium Lignin sulfonate; SLS) carboxylation using inorganic base (NaOH) at three different temperatures (500 mg scale)

> ¹³C-SS NMR has peaks around 175-176 ppm indicative of carboxylation even at 100° C.

 \succ These results suggests that the carboxylation reaction was successful at 500 mg scale, warranting to study this reaction at large scale (100 g scale).

> The IR spectrum of the acid treated alkaline lignin after reaction confirmed carboxylation can be achieved at 80 °C in 3 h



Carboxylation of Lignite

- Two different lignites DEC25, Buelah Zap Lignite, and DEC26, Wyodak Sub-bitiminous Coal was tested for carboxylation.
- Four different conditions was used to test the carboxylation of DEC25, Buelah Zap Lignite.
- All samples displayed increased intensity at 1711 cm⁻¹ when it was compared to the spectrum of unreacted-lignite

Entry	Reactant	Base	Solvent	Temp.	Pressure	Time	Yield
1						12 h	59%
2	Liapita*	NaOH [*]	neet	120.00	250 paig	6 h	39%
3	- Lignite [*]	NaOn	neat	130 <u>°C</u>	250 psig	3 h	65%
4						9 h	57%

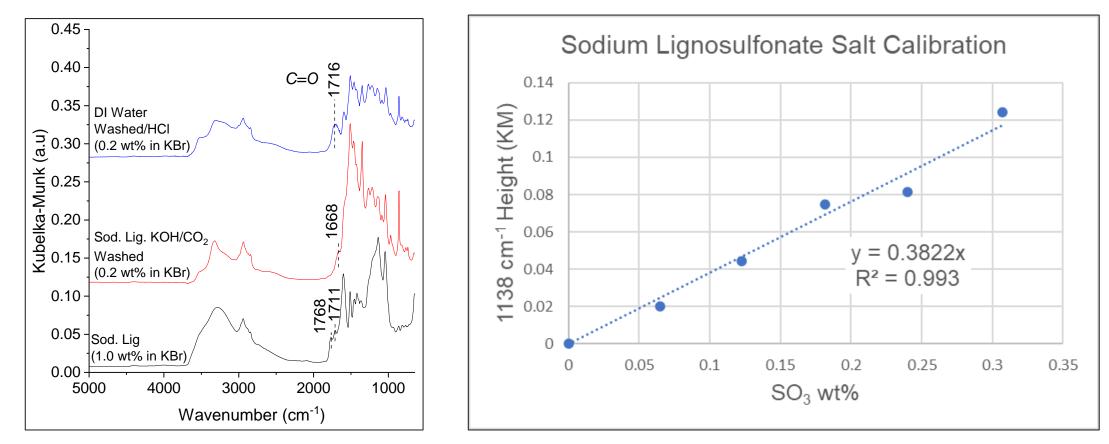
-0.05

-0.10

-0.15

-0.20

-0.25

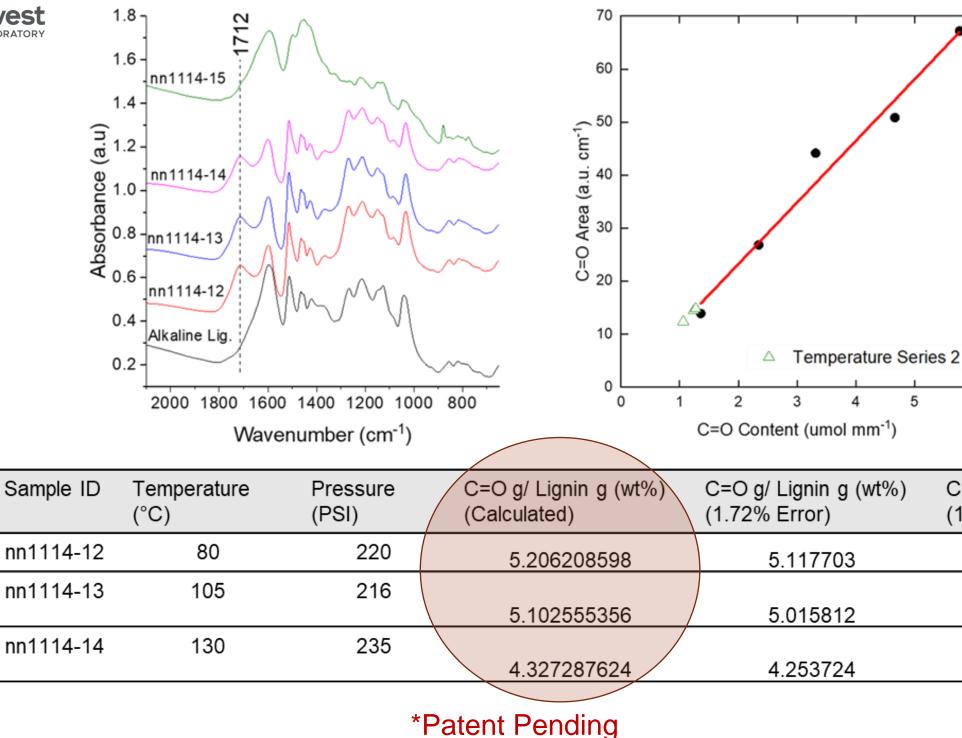

1900

Absorbance (a.u)

Quantification of Carboxylation on Lignin by FT-IR

Pacific Northwest

FT-IR can be used for the quantification of carboxylic acids on Lignin



 \geq IR results conformed that acid washing is needed for quantifying carboxylic acids on lignins \geq IR results on sodium lignin sulfonate demonstrated an excellent fit between peak height of SO₃ groups and the SO_3 weight percentage.

 \geq IR results of sodium lignin sulfonate indicated that IR can be used to successfully quantify -SO₃ groups.

Quantification of COOH Functional Group in Lignin – Alkaline Lignin*

Pacific Northwest NATIONAL LABORATORY

C=O g/Lignin g (wt%) (18.9% Error)

4.378421

4.291249

3.639249

Composite Synthesis and ASTM Properties

Composite design

Polymer type Filler type Filler size Filler content

Additives and content

Manufacturing process design

Thermophysical properties of constituents

Manufacturing approach

Tooling design

Process parameters

Composite performance

Filler distribution

Tensile and flexural properties **ASTM D6109 ASTM D7031**

Water absorption

IBC metrics

Process development for baseline composites

Process development for functionalized lignin

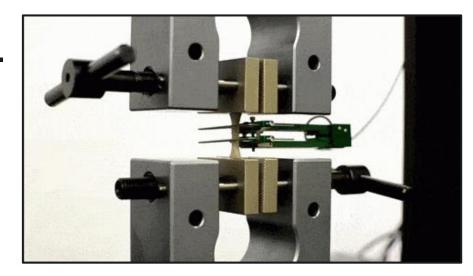
Performance of composites with functionalized lignin

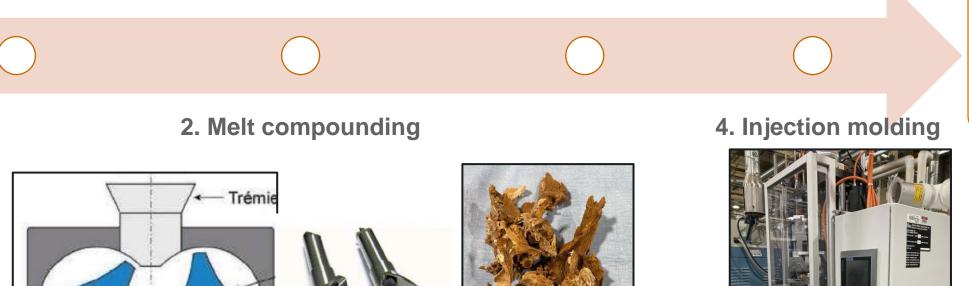
Northwest

NATIONAL LABORATORY

Pacific

CO₂LIG Composite Manufacturing


Manufacturing baseline composites to test properties.

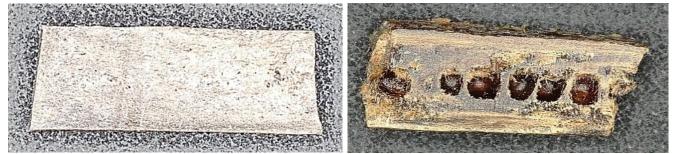


- 1. Dry mixing
- Filler: wood flour, lignin, lignite
- Polymer: HDPE, MAPE

3. Granulation

Composites

- Panel
- Tensile specimens
- Flexural specimens


Process Development for CO₂LIG-polymer Composites

Pacific Northwest

Identified process conditions for CO₂LIG-polymer composites with less voids.

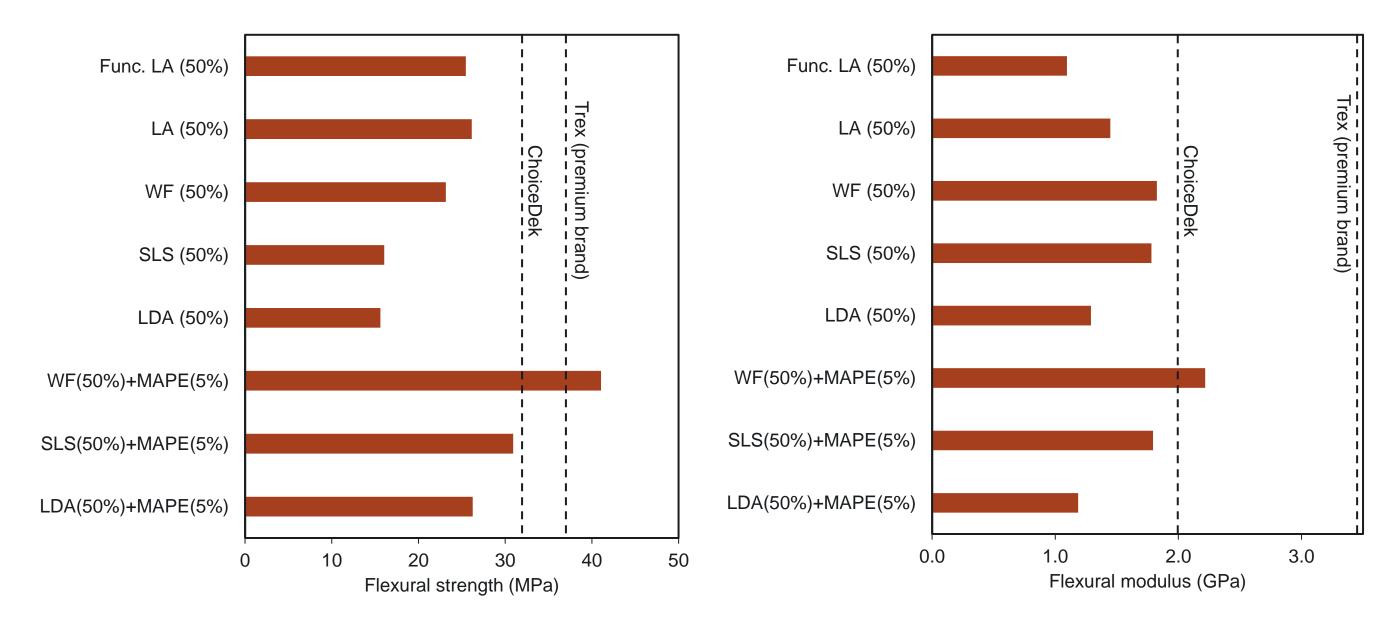
50% WPC

60% LPC

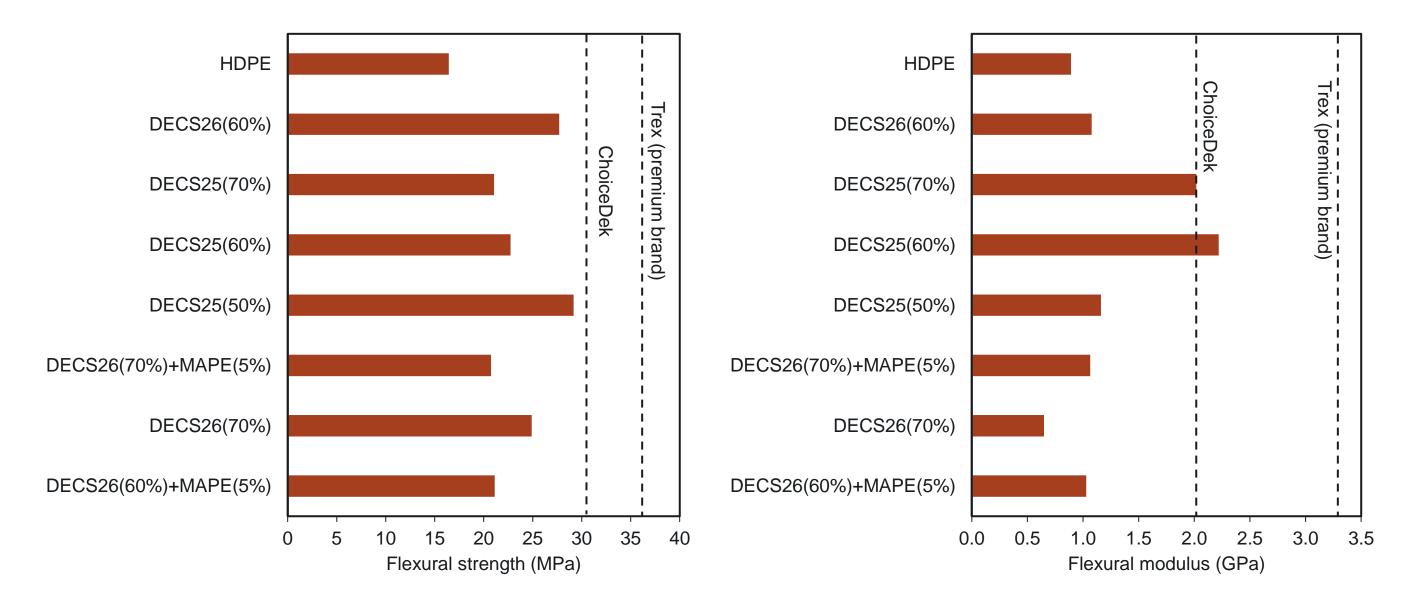
Optical photos of flexural specimens, manufactured using one-stage molding parameters

	One-Stage, WPC	One-Stage, LPC	Two-Stage, LPC	Two-Stage, Low-Temp, LPC
Composite Temperature (°F)	365	365	365	320
Mold Temperature (°F)	200	200	200	200
Injection Rate (in/s)	1.25	0.85	1.1; 0.85	1.1; 0.85
Pack Fill Length (in)	0.3	0.15	0.15	0.15
Pack Hold Time (s)	5	5	5	5
Pack Pressure (psi)	20,000	20,000	20,000	20,000
Refill Screw Jog Speed (rpm)	120	120	120	120

Cross-section of LPC's manufactured using two-stage molding parameters


- \succ occurrence of the voids
- > The void distribution pattern was significantly different from that observed for all previous samples

Two-Stage injection process greatly reduced the


Mechanical Performance of Lignin Plastic Composites

Mechanical Performance of Lignite Plastic Composites

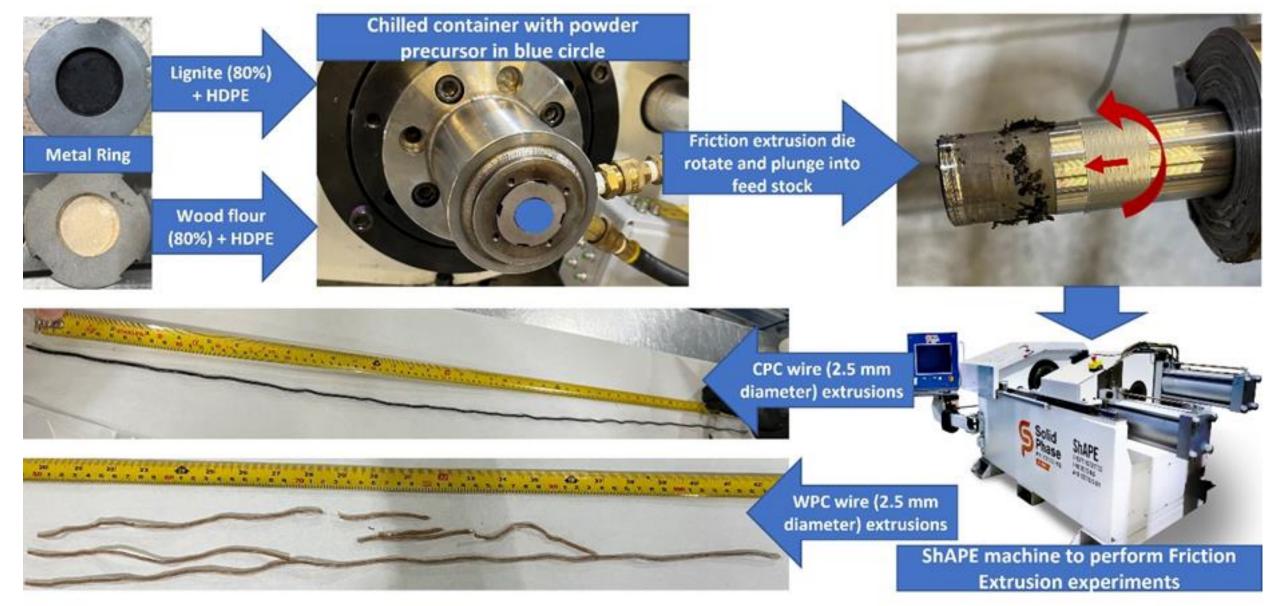
Load at Maximum Deflection (IBC Requirement)

Carboxylated lignin polymer composites met IBC standard for flooring and decking material (>100 psf)

ASTM D7264 was used for Mechanical Performance

Material	Flexural strength (MPa)	Flexural modulus (GPa)	Uniform load at max deflection allowed (psf)	
LPC with 50 wt.% LA (unfunctionalized)	26.21	1.04	131.2	Ne rating t
LPC with 50 wt.% fLA	25.86	1.87	92.6 - 105.2	Mee spai

uirement) *Meets Milestone 6.1 Indard for flooring


leed to reduce the span ng/increase decking board thickness to meet the requirement

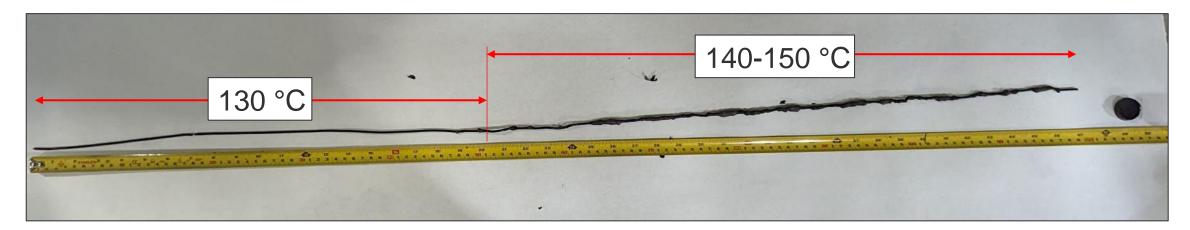
ets the requirement at 16" an rating and 1" thickness

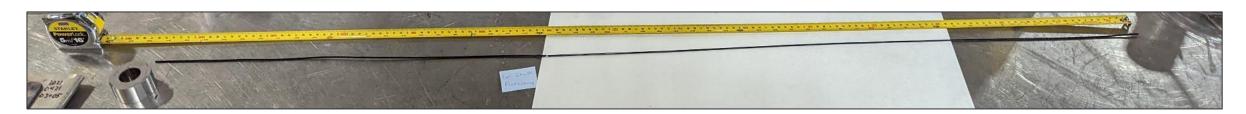
Friction extrusion of CO₂LIG Composites

Pacific Northwest NATIONAL LABORATORY

> A 1.2 m long (at 135 °C) and 2.5 mm diameter CPC wire was extruded that was continuous in nature

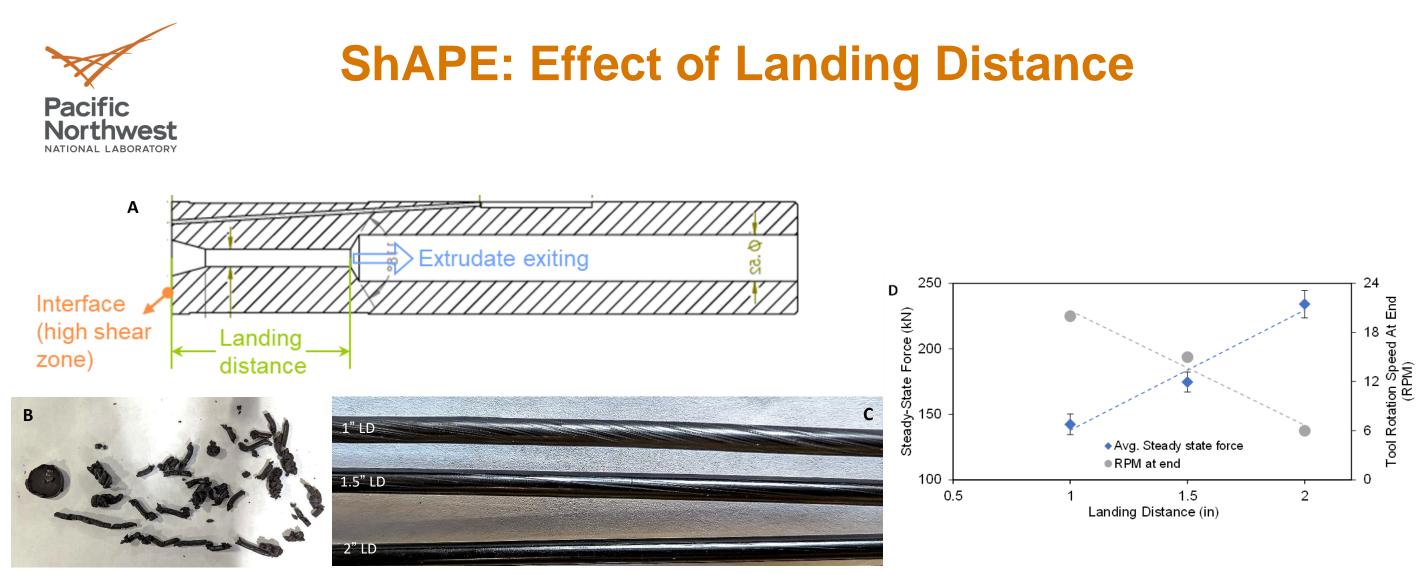
Friction extrusion of CO₂LIG Composites

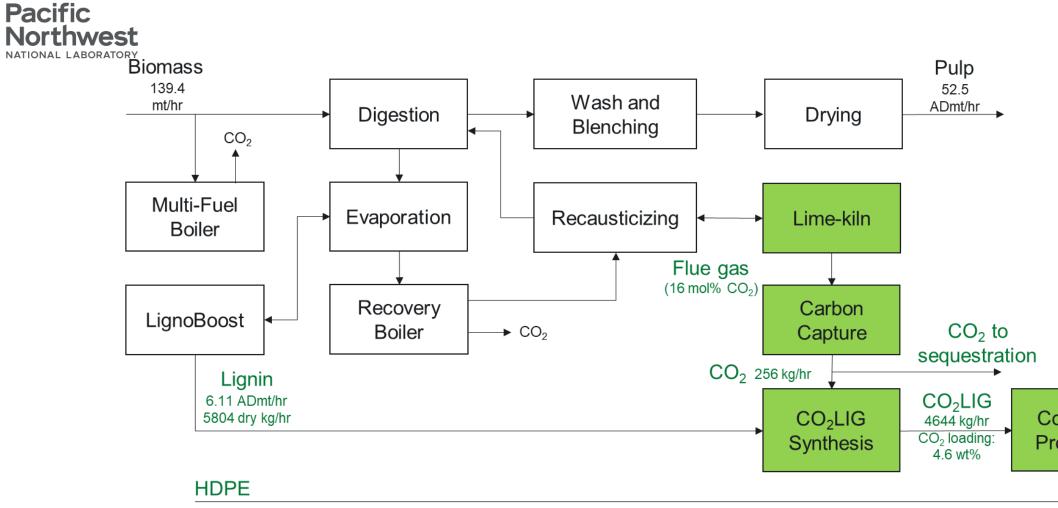




Northwest

ShAPE : Friction extrusion of CO₂LIG Composites Effect of Extrusion Temperature


Identified process conditions for extruding CPC's.



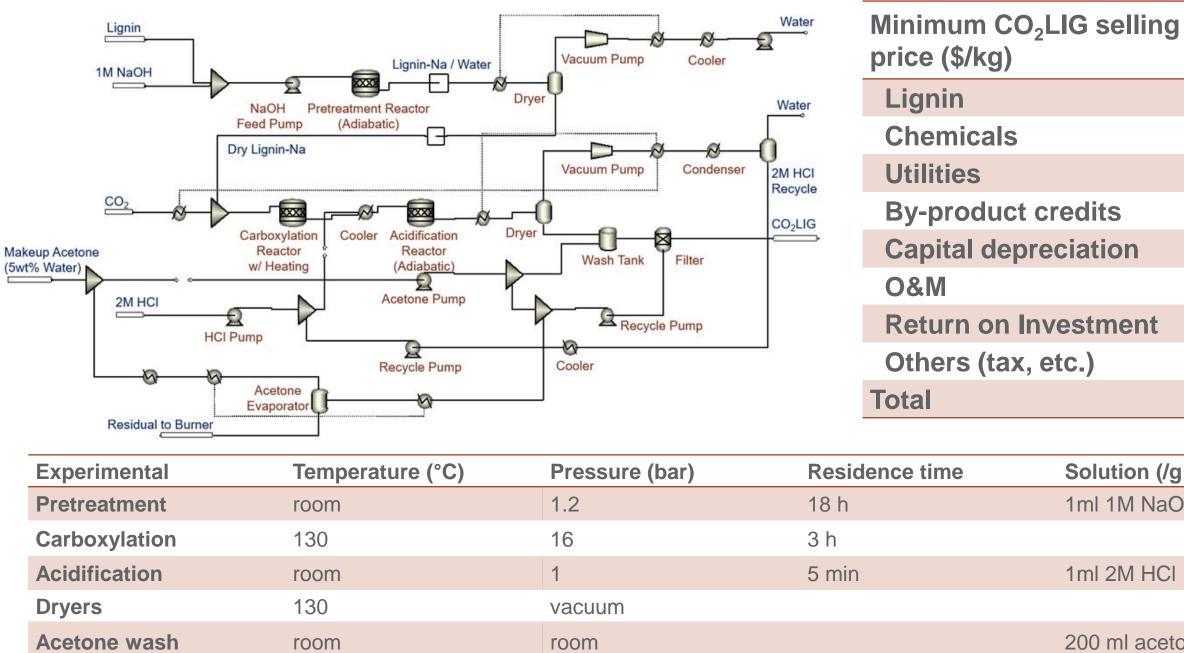
 \succ At 130 °C extrusion temperature, the wire was smooth with uniform diameter throughout the extruded length

 \succ Effect of Tool landing distances ranging form 0.125'-2" on extrudability and surface finish of the Lignite-Plastic composites (CPC's) with 80 % lignite was investigated. \succ Surface was smoother with a longer landing distance (2").

Techno-Economic Projections

Included in LCA, but not TEA; LCI collected from Culbertson et al., 2016; Lignin price collected from Hodasova et al., 2015

Included in both TEA and LCA; mass and energy balance, LCI, equipment sizing generated from process models


Model and experimental data-based TEA and cradle-to-gate LCA to quantify economic and environmental benefits

CO₂LIG-HDPE composite Composite Processing

Techno-Economic Projections

Pacific Northwest NATIONAL LABORATORY

Updated TEA results based on real experimental data suggests that CO2LIG can be produced at a cost lower than the HDPE (\$1/kg)

	0.375
	0.085
	0.028
edits	-0.043
ciation	0.071
	0.088
estment	0.106
c.)	0.112
	0.820

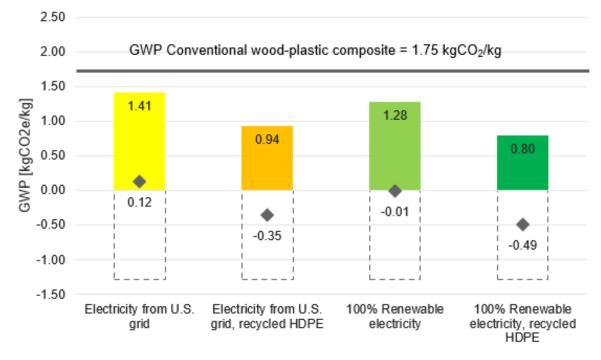
Solution (/g lignin) 1ml 1M NaOH

1ml 2M HCl

200 ml acetone (5% H_2O)

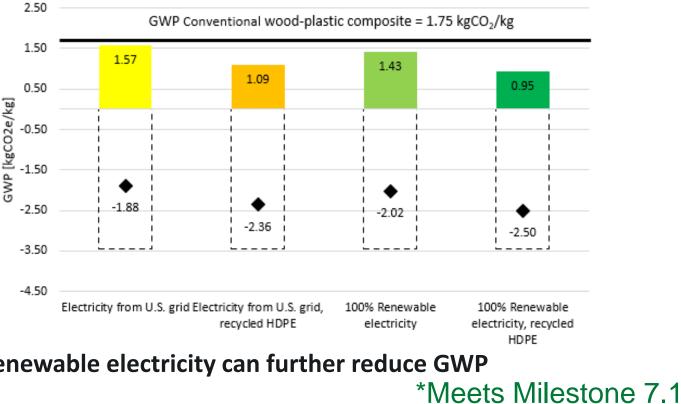
Plans for Next Budget Period: Carboxylation

- > Identify process for separation of carboxylated lignin
- > Production of up to 5 kg quantities of carboxylated lignin and lignite
- > By the end of BP3, the project team will design an integrated process for isolation of the pure carboxylated lignin product


BP2 Preliminary Life Cycle Analysis

Pacific Northwest

> Approach

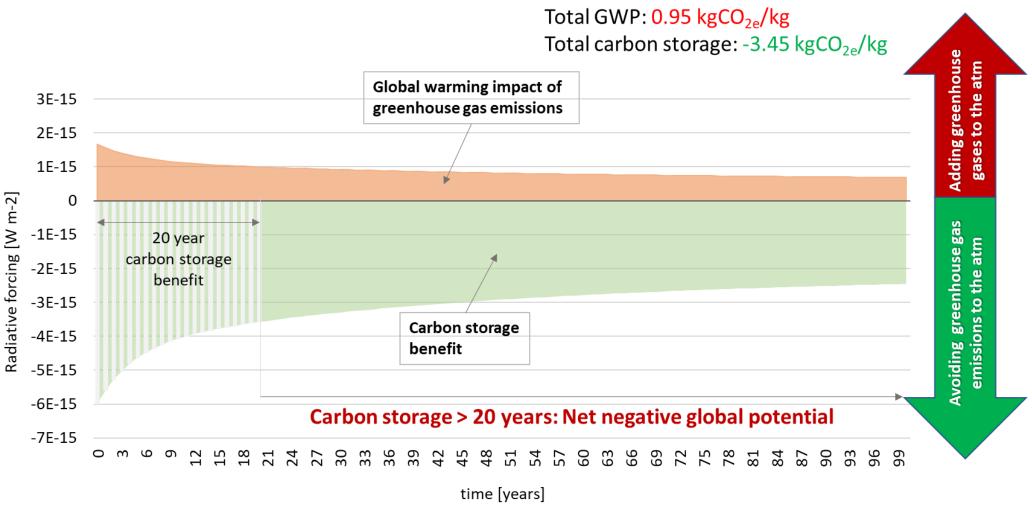

LCA suggesting the global warming potential (GWP) of CO₂LIG Panel is much lower than that of conventional wood-plastic composite

- "Cradle-to-gate" LCA was conducted in SimaPro v9 using TRICI v.2.1 method with DATASMART and Ecoinvent v.3.5 databases. The functional unit is 1 kg of CO₂LIG-plastic composite panel.
- Main components of GWP include (1) fossil-based GHG emissions and (2) carbon storage benefits from storing carbon over the lifetime of the panel and CO₂ sequestrated underground.
- > Global warming potential of 1 kg CO₂LIG panel (time horizon for fossil-based GHG emission and carbon storage benefits fixed to 100 year)

(a) Results include the CO₂ stored into CO₂LIG only

(b) Results include the CO_2 stored into CO_2 LIG and the additional CO_2 sequestered and stored in the ground

Replacing virgin HDPE with recycled HDPE, and use of renewable electricity can further reduce GWP



BP2 Preliminary Life Cycle Analysis

Pacific Northwest LCA was done for lignin carboxylation, suggesting the GWP of CO₂LIG Panel is can be carbon negative when the penal has a life time greater than 20 years

Temporal radiative forcing analysis was performed to evaluate the number of years of storge of CO_2 on CO₂LIG-plastic composite (lifetime of the product) needed to achieve carbon neutrality.

Total GWP: 0.95 kgCO_{2e}/kg

Using 100% renewable electricity, recycled HDPE with benefits from subsurface CO₂ storage

*Meets Milestone 7.1²⁸

Polymer Composites Future Testing and TEA

Pacific

- > Complete assessing composites strength, stability, and flammability.
- > Down select composite that meets international building code (IBC) requirements for decking applications.
- \succ Complete analysis to determine if the proposed process is CO₂-negative and
- Complete market analysis to access feasibility and impact.

Milestone Log

c west	No.	Budget Period	Task/ Subtask	Milestone Description	Planned Completion	<u>Actual</u> or Estimated Completion
ABORATORY	M1.1	1&2	1	Statement of Project Objectives	9/01/2021	<u>8/24/2021</u>
ABORATORT	M1.1.1	1&2	1	Updated Project Management Plan	10/1/2021	<u>10/12/2021</u>
Completed 🗸	M1.2	1	1	Kickoff Meeting	10/21/2021	<u>10/21/2021</u>
	M1.3	1, 2 & 3	1	Quarterly progress reports	30 days after end of each reporting period	
Completed <	M1.4	1&2	1	Go-No-Go Presentation at NETL	9/30/2022, 9/30/2023	09/12/2022
	M1.5	3	1	Delivery of final report - Final technical and economic feasibility study with recommendations of continuation for slip stream testing and industry hand off	Report 30 days after end of project completion, presentation scheduled as convenient for DOE	10/31/2023
Completed 🥏	M2. 1	1	2	Synthesize 1-3 CO ₂ BOL solvents that can achieve 1-5 wt.% carboxylation of a model lignin or lignite molecule	2/28/2022	02/28/2022
Completed 🥏	M2.2	1	2	Quantify the optimal density of carboxylic acids on lignin and lignite for composite manufacturing	5/31/2022	03/31/2023
Completed 🥏	M3.1	1	3	Demonstrate 3-5 lignin/ lignite-polymer composites can be manufactured using injection and compression molding at varying temperatures (150-200 °C).	9/30/2022	<u>9/30/2022</u>
Completed 🥏	M4.1	1	4	Complete preliminary LCA/TEA using 1-5 Wt. % carboxylated to study the feasibility of producing carbon negative materials	9/30/2022	<u>9/30/2022</u>
Completed 🥑	M5.1	1	2	Identify at least 1 viable CO ₂ BOL solvent that can achieve 1-5 wt.% carboxylation of lignin or lignite. (We have identified inexpensive inorganic bases such as sodium hydroxide (NaOH) and organic superbases such as 1,8- Diazobicylo[5,4,0]undec-7-ene (DBU) for achieving 1-5 wt.% carboxylation)	12/31/2022	<u>12/31/2022</u>
Completed 🥏	M5.2	2	5	Produce 100 g of carboxylated lignin and lignite particles for fabrication into composites based on optimal filler concentration and structural thermal properties.	6/30/2023	<u>6/30/2023</u>
On Track 🥏	M6.1	2	6	Produce decking composites meeting international building codes criteria such as distributed load > 100 lbs.ft ² .	9/30/2023	On track
On Track 🥏	M7.1	2	7	Complete Preliminary LCA/TEA completed based on assumptions for at least one lignin/lignite candidate to study the feasibility of producing carbon-negative materials.	9/30/2023	On track

BP	Success Criteria	BP2 Results	Milestone
BP2	Down select 1 viable CO ₂ BOL solvent that can achieve 1-5 wt.% carboxylation of lignin or lignite at expected reboiler temperatures at rates commensurate with slipstream sizing and modeling.		Met Milestone 5.1
BP2	Produce 100 g of carboxylated lignin and lignite particles for fabrication into composites based on optimal filler concentration and structural thermal properties. Produce decking composites meeting international building codes criteria such as distributed load > 100 lbs.ft ² .	We successfully carboxylated alkaline lignin at 200 g scale at temperatures 130 °C within 3 h with an isolated product yield of 64 %. We successfully produced LPCs containing carboxylated alkaline lignin (CAL) that meet the IBC standards for both flooring and decking materials. These LPCs can withstand a uniform live load of 105 pounds per square foot (psf), which exceeds the minimum requirement of 100 psf necessary for qualifying as a flooring or decking material as per the IBC guidelines.	Met Milestone 5.2 Met Milestone 6.1
BP2	Complete preliminary LCA/TEA completed based on assumptions for at least one lignin/lignite candidate to study the feasibility of producing carbon-negative materials	Initial TEA results suggests that the proposed technology can produce alternative CO_2 negative building material at a cost lower than the price of conventional building material (i.e., HDPE). Carbon neutrality can be attained after 20 years of carbon storage through the usage of 100% renewable electricity, recycled HDPE, sequestering CO_2 in CO_2 LIG, and storing the CO_2 underground. Beyond this time frame, continuing to store carbon would yield a net decrease in Global Warming Potential (GWP), advancing carbon negativity.	Met Milestone 7.1

Project Outputs

Keynote Talk

1. Satish K. Nune, Conversion of CO₂ into High Value Materials: Producing CO₂-Negative Building Composites, June 4-5, 2023, Baker Hughes's Energy Frontier Summit, Energy Innovation Center, Oklahoma City, USA.

Presentations

- 2. David J. Heldebrant, CO2-Negative Building Composites; CO₂ Mineralization Workshop at University of Minnesota, May 2, 2023, USA.
- **3. Jaelynne King,** Spectroscopic techniques for Carboxylic Acid Quantification, 2023 Spring ACS meeting at Indianapolis, USA.

Abstracts Submitted to Conferences

- 1. Satish K. Nune, Conversion of CO₂ into Materials: Producing CO₂-Negative Building Composites; <u>47th International</u> Technical Conference on Clean Energy (July 23-27, 2023) (session organized by DOE PM Aaron Fuller).
- 2. Satish K. Nune, Integrated Capture and Conversion of CO_2 into Materials (IC³M): Pathways for Producing CO₂-Negative Building Composites, 2023 FECM / NETL Carbon Management Research Project Review Meeting, Pittsburgh, PA.
- 3. Satish K. Nune, Production of CO₂-Negative Building Composites; 2023 AICHE Annual Meeting, Orlando, FL.
- 4. Yuan Jiang Process Modeling, Techno-economic and Life-cycle GHG Emission Assessments of Producing Carbon-Negative Building Material from CO₂ and Waste Lignin or Lignite; **2023 AICHE Annual Meeting, Orlando, FL**.

Project Outputs

Submitted U.S. Patent/ Provisional Patent Applications

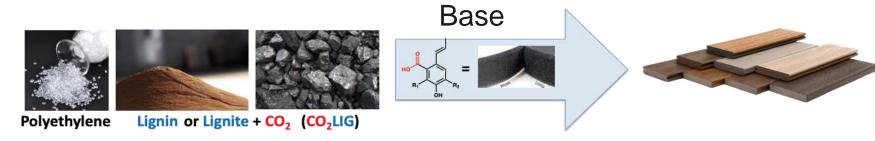
- 1. INTEGRATED CAPTURE AND CONVERSION OF CO₂ INTO MATERIALS: METHODS AND PROCESSES FOR PRODUCING CO₂-NEGATIVE BUILDING COMPOSITES; 8/2022
- 2. CONVERSION OF CO₂ INTO MATERIALS: PRODUCING CO₂-NEGATIVE BUILDING COMPOSITES; 3/2023

Invention Disclosures

1. Friction extrusion of polymer composites with high filler content (5/10/2023)

Publications

- Quantification of carboxylic acid groups in Kolbe-Schmidt type reaction of lignin 1. Manuscript in preparation 7/2023.
- 2. Manufacturing and characterization of lignin-polymer composites (LPC) Manuscript in preparation 7/2023.
- 3. Process parameter optimization, manufacturing, and performance evaluation of lignin polymer composites (LPC) with high lignin filler concentrations Manuscript in Preparation 9/2023.



Northwest

Pacific

Key Findings of FWP 78606 in BP2

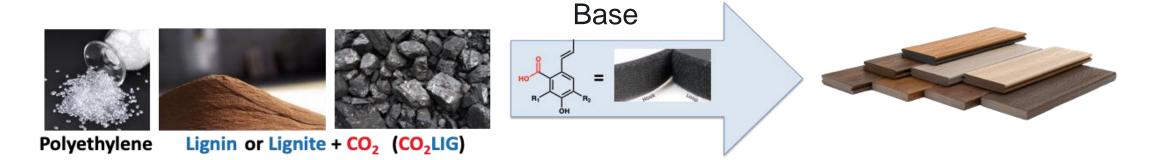
CO₂ can provide the "Velcro" to help lignin and lignite bind strongly to polymers.

- Demonstrated lignin carboxylation (~2-5 wt. % CO₂ fixation) at temperatures as low as 80 °C in 100g batches
 - Meets Milestone 5.1 and BP2 success criteria #1
- Developed separation methods to separate pure carboxylated lignin (up to 94 % Yield)
- Manufactured lignin plastic composites (LPC; 50-70 wt.% lignin filler) with improved mechanical performance over wood plastic composites (WPCs)
- \succ Manufactured lignite plastic composites (LtPC, 80 wt.% lignite filler) using shear assisted processing and extrusion (ShAPETM)

> IP filed , manuscript #1 in preparation

> Manufactured LPCs with carboxylated alkaline lignin to meet IBC metrics to withstand a uniform live load of up to 105.2 psf (>100 psf minimum requirement) for qualifying as a flooring or decking material.

Meets Milestone 5.2 and BP2 success criteria #2


- > 100 % renewable electricity, recycled HDPE and sequestered CO₂ in CO₂LIG, and the CO₂ stored in the ground, the carbon neutrality is achieved after 20 years of carbon storage, and > 20 years results in a net negative GWP.
 - > Meets Milestone 7.1 and BP2 success criteria #3, manuscript #2 in preparation

Northwes

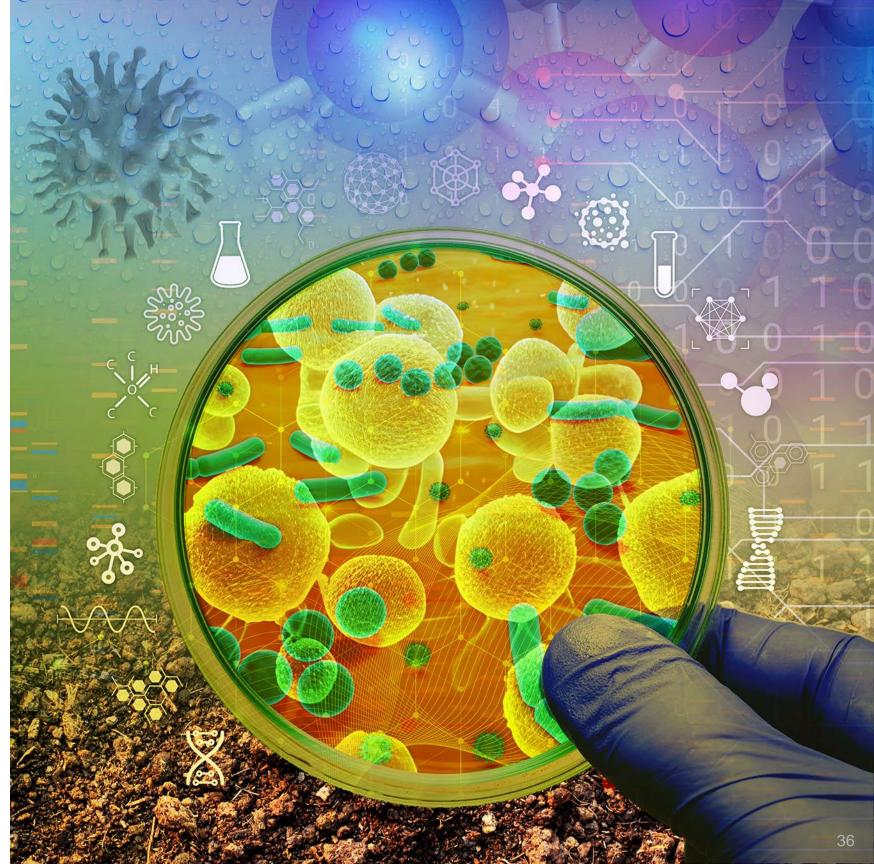
Summary

CO₂ can provide the "Velcro" to help lignin and lignite bind strongly to polymers.

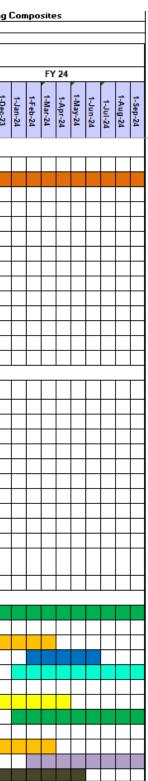
- > Successfully demonstrated lignin carboxylation (~2-5 wt. % CO_2 fixation) at temperatures as low as 80 °C (~94 % Yield).
- Produced lignin composites (LPC; 70 % lignin filler) with elastic modulus and tensile strength higher than Wood Plastic Composite (WPC's)
- Carboxylated lignin polymer composites met IBC standard for flooring and decking material (>100 psf); carboxylic acids (captured CO_2) serves as a chemical binder that upgrades lignin or lignite particle polymer composites
- > Produced uniform lignite-HDPE composite (CPC) wires (up to 135 cm in length) using PNNL proprietary method (Shape[™]).

When 100 % renewable electricity, recycled HDPE was considered along with sequestered CO₂ in CO₂LIG, and the CO₂ stored in the ground, the carbon neutrality is achieved after 20 years of carbon storage. Storing carbon for more than 20 years would result in a net negative GWP.

Thank you


Satish K. Nune

SENIOR RESEARCH SCIENTIST


Phone: 509-371-6632 Satish.nune@pnnl.gov

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352

www.pnnl.gov

Proposal Title		Inte	grated C	aptu	ire ai	nd C	onve	ersio	n of (CO2										2-Ne	ga
Lead PI, Institution Costshare Partner																	l Labo ; Comp				
															Jiiia	043	00111	Jany			
									51					-							
									FY	22								Y 23			_
				1-A	10	1-N	10	17	1-M.	1-A	į	ź	1-Se	10	1-No	12	1-Ma	1-	1-M.	ź	1-A
				1-sep-21 1-Aug-21	1-Oct-21	ov-21	1-Dec-21	b-22	ar-22	pr-22	JN-22	ul-22	1-Sep-22 1-Aug-22	ct-22	1-Dec-22 1-Nov-22	1-Jan-23	1-Mar-23 1-Feb-23	1-Apr-23	-Jun-23 May-23	ul-23	Jg-23
	Star	rt	End	-																	
Budget Period 1 (BP1)	26 Au	- 21 - 20	0-Sep-22										_								
Task 1 Project management (BP1, BP2, BP3)	20-Au	y-21 30	0-3ep-22																		
Task 2 Solvent Based Carboxylation of Model Compounds																-					
2.1: Solvent Screening and synthesis										-	+	+	-		i — —	+-'	\vdash	+	-+-	++	_
		_			_			+			+	++	-		<u> </u>	+-'	\vdash	+	\vdash	++	
2.2: Solvent Bronsted basicity to deprotonate phenol to form ammonium phenolate s 2.3: Determine the effect of temperature on degree of CO ₂ incorporation	pecies of model compounds				+			+		+	+	+	+	╉┤	\vdash	+	\vdash	+ +	\square	++	_
2.4: Speciation and Kinetics of CO ₂ insertion												+	+		\vdash	+	\vdash	++	\vdash	++	_
2.5: Determination of suitable lignin for carboxylation based on density of phenolic h	vdroxyls														\vdash	+	\vdash	++	\vdash	++	_
2.5. Betermination of suitable light for carboxylation based on density of phenolic in 2.6: Recyclability of Solvents	lydi oxyis				+		\square	+				H	+		\vdash	+	\vdash	++	\square	++	_
Task 3.0. Manufacturing baseline CO ₂ LIG-polymer composites and charact	erization														\vdash	+	\vdash	++	\vdash	++	_
3.1: Compatibility between filler speciation and matrix composition															1	+	\vdash	++	_ _	++	_
3.2: Filler concentration, particle size and carboxylation effect on composite perform	nance															+-	\vdash	++	\square	++	_
Task 4.0 Initial Techno-Economic Projections						\square									\square	-		++	\square	++	_
4.1 Complete initial process performance projections						\square										+-	\vdash	++	1	++	_
		Go-	No Go [)eci:	sion				_												
Budget Period 2 (BP2)	*****	*** 30	0-Sep-23									Π									
Task 5.0. Solvent based carboxylation of processed lignin and lignite partic	les		-		+		\vdash	+				\vdash	-			-				++	
5.1: Evaluate various solvents with varied basicity for carboxylation of lignin and lig					+	+	\vdash	+	+	+	+	\vdash	-			d a			\vdash	++	_
5.2: Controlling amount of carboxylation on lignin and lignite					+			+	+		+	+	+					┍─┑	r+-	++	_
5.3: Measuring reaction kinetics, rate constants and effect of particle size						+	\vdash	+	+	+	+	++									
5.4: Production of 100 g of carboxylated lignin and/or lignite						+		+	+	+	+	+				+	\vdash	+	\square	+	
Task 6.0. Fabrication and testing of CO ₂ -functionalized lignin and lignite cor	ntaining composites					+		+	+		+	+				_		++			_
6.1: Manufacturing functionalized lignin and lignite – polymer composites					+							\square									
6.2: Performance testing of polymer composites						\square		\top	\square		\top	\square									_
6.3: Down-select formulation for further testing and qualification						\square	\square	\top	\square			\square						+			
7.0 Intermediate LCA/ TEA analysis																+		+			
7.1: Preliminary LCA/TEA completed based on assumptions for at least one feasibility of producing carbon-negative materials	ignin/lignite candidate to study the																				
7.2: High-level screening to identify optimal lignin/lignite sources.						+	\vdash	+	+	+	+	+				-					
		Go-	No Go [)eci:	sion						_										-
Budget Period 3 (BP3)	*****	*** 30	0-Sep-24												\square	\top		T	\square	TT	_
Task 8.0 Process optimization for solvent reclamation and scale-up						\square	\vdash	+				\square				+	\square	++	1	++	_
8.1: Identify process for separation of carboxylated lignin from the solvent						\square	\square	+	\square			\square				+	\vdash	+	i T	++	_
8.2: Demonstrated solvent recovery of >95 %						\square			\square			\square						+	\square	+	_
8.3: Production of up to 5 kg quantities of carboxylated lignin and lignite						\square						\square						+ +	\square	+	
Task 9.0 Assessing composite strength, stability, and flammability									\square	\top		$ \uparrow $				\top		$\uparrow \uparrow$		$\uparrow \uparrow$	_
9.1: Qualify composites to show tensile strength and flexural strength												\square						\square		\square	_
9.2: Down select composited that meets internal building code (IBC) requirements for	or decking applications															Τ		\square			
Task 10.0 Final techno-economic analysis																		\square			
10.1: TEA analysis to confirm the production cost of CO ₂ negative building materials																					
10.2: Analysis to determine if the proposed process is CO2-negative									- ·									-			_

Patents/ Publications

Submitted U.S. Patent/ Provisional Patent Applications

- 1. INTEGRATED CAPTURE AND CONVERSION OF CO₂ INTO MATERIALS: METHODS AND PROCESSES FOR PRODUCING CO₂-NEGATIVE BUILDING COMPOSITES; 8/2022
- 2. CONVERSION OF CO₂ INTO MATERIALS: PRODUCING CO₂-NEGATIVE BUILDING COMPOSITES; 3/2023

Invention Disclosures

Friction extrusion of polymer composites with high filler content (5/10/2023)

Publications

- Quantification of carboxylic acid groups in Kolbe-Schmidt type reaction of lignin 1. Manuscript in preparation 9/2023.
- 2. Manufacturing and characterization of lignin-polymer composites (LPC) Manuscript in preparation 9/2023.
- 3. Process parameter optimization, manufacturing, and performance evaluation of lignin polymer composites (LPC) with high lignin filler concentrations Manuscript in Preparation 12/2023.