

DE-FE0031909

Dehydration Membrane Reactor for Production of Valuable Chemicals from CO₂ and H₂

Shiguang Li, Weiwei Xu, Qiaobei Dong, Howard Meyer, GTI Energy Xinhua Liang, Kaiying Wang, Missouri University of Science and Technology (Missouri S&T) and Washington University in St. Louis (WashU)

Miao Yu, Richard Ciora, The State University of New York at Buffalo (UB)

2023 Carbon Management Research Project Review Meeting August 28 – September 1, 2023

GTI Energy: 80-year history of turning raw technology into practical energy solutions

World-class facility in Chicago area

Across the entire energy value chain

CCUS is one of **GTI** strategic focus areas

- Carbon conversion
 - <u>FE0031909</u>: Membrane reactors for conversion of CO₂ to fuels/chemicals
- Carbon capture
 - <u>FE0031946</u>: Engineering scale facilitated transport membrane
 - **FE0031598**: Bench-scale GO-based membrane
 - **FE0032215**: Nano-confined Ionic liquid membrane
 - FE0031630: Solvent-based ROTA-CAP
 - **FE0031730**: Size-sieving adsorbent
- Carbon dioxide removal (CDR)
 - **FE0031969**: Trapped small amines in capsules
- Carbon transport and storage
 - FE0032239: CarbonSAFE Phase II

Project overview

- <u>Background</u>: Membrane reactor DME production successfully developed through an ARPA-E project (DE-AR0000806)
- <u>Current project objective</u>: Develop membrane reactor for production of valuable chemicals from CO₂ and H₂
 - Target product: liquefied petroleum gas (LPG)
- Performance period: 1/1/21 3/31/25
- <u>Total funding</u>: \$1,269,664 (DOE: \$1.0 MM, cost share: \$269,664)
- Goal: CO₂ conversion >50%, LPG yield >45%

• <u>Team</u> :	Member	Roles				
	GTI ENERGY solutions that transform	 Project management and planning Parametric and deactivation tests Techno-economic and life-cycle analyses 				
	Ъ	 Membrane and membrane reactor development 				
	MISSOURI SEET Washington University in St. Louis	Catalyst development				

DME: dimethyl ether; LPG: liquefied petroleum gas

- $2CO_2 + 6H_2 \Leftrightarrow CH_3OCH_3 + 3H_2O$
- CO₂ conversion and DME yield significantly greater than packed bed reactors reported in the literature

3

The rising need for LPG

- Global LPG production ~330 million tonnes in 2022
- The Europe LPG market was roughly 42 million tonnes in 2021, and is expected to grow to 59 million tonnes by 2027
- Nearly 2% of the U.S. energy needs are supplied LPG
- LPG is an economically efficient, cooking energy solution already used by over 2.5 billion people worldwide

Technology description

One-step process with bifunctional catalyst intensifies a process that would otherwise require multiple steps:

- Methanol synthesis: $CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$ Catalyst 1: CuO/ZnO/Al₂O₃ based
- LPG synthesis: MeOH \Rightarrow hydrocarbon pool \Rightarrow LPG Catalyst 2: Pd-zeolite β based

Na⁺-gated membrane (*Science*, vol. 367, pp. 667, 2020) removes water *in situ*, shifting the equilibrium towards product formation

Catalyst Development

Bifunctional catalyst developed for LPG synthesis

Zirconium (Zr) modified CuO/ZnO/Al₂O₃ (CZZA) for the 1st reaction – methanol synthesis

TEM image: uniform nanoscale particles (~15 nm)

CZZA: Zirconium (Zr) modified CuO/ZnO/Al₂O₃; TEM: Transmission Electron Microscopy

Pd-zeolite β catalyst prepared for the 2nd reaction – LPG synthesis

TEM image: Pd particle size ~5.4 nm

Bench-mark LPG synthesis with packed bed reactor: LPG yield of 11% when using bifunctional catalyst

- **Pressure**: 20 bara
- **Bifunctional catalyst**: 0.5 g CZZA and 1 g Pd- β zeolite
 - Pd content in Pd-β zeolite catalyst: 0.032 wt.%
- Reaction products: CO, CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, C₅+, CH₃OH, DME

Results :	CO ₂ conversion	31%
	Hydrocarbons selectivity	46%
	LPG selectivity	35%
	LPG yield	11%

LPG: liquefied petroleum gas; CZZA: Zirconium (Zr) modified CuO/ZnO/Al₂O₃; DME: dimethyl ether

7

GTI ENERGY

Membrane and Membrane Reactor Development

Breakthrough development of Na⁺-gated, nanochannel membrane for dehydration Science

Huazheng Li, Chenglong Qiu, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Science **367** (6478), 667-671. DOI: 10.1126/science.aaz6053

Na⁺ neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H₂O molecules, whereas blocking the permeation of larger molecules, such as H₂, CO₂, CO, and methanol

Kinetic diameters:

- H₂O: 0.265 nm
- H₂: 0.289 nm
- Methanol: 0.36 nm

FNFRGY

CO₂: 0.33 nm

9

Membrane showed high flux and selectivity for dehydration of H₂O/CO₂/CO/H₂/methanol mixture ^{GTI ENERGY}

- **Other selectivities**
 - H₂O/H₂ > 190
 - H₂O/CO >170
 - H₂O/MeOH >80

Kinetic diameters:

- H₂O: 0.265 nm
- H₂: 0.289 nm
- CO₂: 0.33 nm
- Methanol: 0.36 nm

Membrane reactor methanol synthesis (first reaction): superior performance to packed bed

Compared to a traditional packed bed reactor without membrane, both CO₂ conversion and methanol yield increased 3 times in membrane reactor

TR: traditional packed bed reactor; MR: membrane reactor

Membrane reactor LPG synthesis using bifunctional

W/F = wight of catalyst / flow rate of the feed stream; LPG: liquefied petroleum gas; DME: dimethyl ether

The system has been tested for ~2 months 100% (~6 hours/day when operated; standby at 200 °C in H_2 when not operated) 80% "Standard" operating conditions repeated Yield occasionally during systematic evaluation 60% to investigate the stability 54 40% **Standard Operating Conditions** W/F, g(cat)/(mol/h) 23.5 20% Pressure, bara 14 H₂/CO₂ molar ratio 5:1 0 50 100 150 200 O Temperature, °C 300 **Cumulative Operation Time, hours**

W/F = wight of catalyst / flow rate of the feed stream; LPG: liquefied petroleum gas

Good stability

Literature comparison: superior performance to packed bed reactors for LPG synthesis

Highest LPG productivity and CO_2 conversion of any work found in literature (CO_2 conversion to LPG)

Only other competitive performance used a highly impractical configuration of **two** packed bed reactors with intercooling and reheating in between

GTI ENERGY

- 1st packed bed reactor: 260°C
- Cooling to 0°C
- Reheating from 0°C to 330°C
- 2nd packed bed reactor: 330°C

Membrane reactor technology development path

Summary

- GTI and partners are developing a membrane reactor for production of valuable chemicals
 - Na⁺-gated membrane removes water *in situ*, shifting equilibrium towards product formation
- First reaction (methanol synthesis): membrane reactor CO₂ conversion and methanol yield are 3 times greater than packed bed reactor
- One-step membrane reactor LPG synthesis using bifunctional catalyst: CO₂ conversion as high as 90% and LPG yield as high as 61%
 - Superior performance to packed bed reactors
 - Good stability

Acknowledgements

Financial and technical support

DE-FE0031909

DOE NETL: Andy Aurelio, Andrea McNemar and Andrew O'Palko

Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Appendix – Organization chart

Appendix – Gantt chart

ID	Task NO	SubT NO	MS	Task Name	Start	Finish	04	2021 2022 202 4 01 02 03 04 01 02 03 04 01	23 2024 2025 02 03 04 01 02 03 04 01 02 03 04
1	1.0	1	Ê.	Project Management and Planning	Fri 1/1/21	Mon 3/31/25			
2		1.01		Project Management Plan	Fri 1/1/21	Mon 3/31/25			
3			M1.1	Submit updated Project Management Plan to DOE	Sun 2/28/21	Sun 2/28/21		2/28	
4			M1.2	Complete Kickoff Meeting	Tue 3/30/21	Tue 3/30/21		3/30	
5			M1.3	Submit technology maturation plan to DOE	Tue 3/30/21	Tue 3/30/21		3/30	
6			M1.4	Submit Final Technical Report	Mon 6/30/25	Mon 6/30/25			6/30
7	1	1.02		Technology Maturation Plan	Fri 1/1/21	Mon 3/31/25			
8	2.0			Preparation, characterization, and optimization of catalysts	Fri 1/1/21	Fri 3/31/23		-	6
9			M2.1	Ship >20 g of catalysts with BET surface area >100 m2/g to UB from MS&T	Wed 6/30/21	Wed 6/30/21		6/30	
10	3.0			Sequential membrane reactor testing and optimization	Fri 1/1/21	Fri 3/31/23	4		
11			M3.1	Achieve CO2 conversion >30%, hydrocarbon yield >25% at 200-350°C and 10-35 bar	Fri 3/31/23	Fri 3/31/23		•	3/31
12	4.0			Catalyst optimization and catalytic performance evaluation	Sat 4/1/23	Sat 9/30/23			Ц, market and the second se
13		4.01		Catalyst optimization	Sat 4/1/23	Sat 9/30/23		1	
14			M4.1	Complete development of CZZA-based catalyst with surface area > 100 m2/g, and palladium (Pd) loading \ge 0.1 wt.% for the Pd-B zeolite catalyst	Sat 9/30/23	Sat 9/30/23			9/30
15	1	4.02		Catalytic performance evaluation of the optimized catalyst	Sat 4/1/23	Sat 9/30/23	1		The second se
16			M4.2	Achieve CO2 conversion >40%, hydrocarbon yield >15%, and LPG yield >7% at 220-350°C and 10-35 bar in a fixed bed reactor; achieve CO2 conversion >80%, hydrocarbon yield >60%, and LPG yield >35% at 220-330°C and 10-35 bar	Sat 9/30/23	Sat 9/30/23			9/30
17	5.0			Bifunctional membrane reactor testing and optimization	Sun 10/1/23	Sun 6/30/24			h h
18			M5.1	Achieve CO2 conversion >85%, hydrocarbon yield >75%, and LPG yield >45% at 220-330°C and 10-35 bar	Sun 6/30/24	Sun 6/30/24			6/30
19	6.0			Optimization of bifunctional catalyst for membrane reactor testing	Mon 7/1/24	Mon 3/31/25			
20		6.01		Optimization of the catalyst	Mon 7/1/24	Mon 3/31/25			I IIIII
21	1	6.02		Catalytic performance evaluation of the optimized catalyst	Mon 7/1/24	Mon 3/31/25			
22			M6.1	Achieve CO2 conversion >90%, hydrocarbon yield >80%, and LPG yield >45% at 220-330°C and 10-35 bar using optimized catalyst and tested in membrane reactor	Tue 12/31/24	Tue 12/31/24			♦ 12/31
23	7.0			Membrane reactor parametric and deactivation tests	Tue 10/1/24	Mon 3/31/25			L M
24			M7.1	Complete 100-500 hours continuous testing; achieve steady-state CO2 conversion >85%, LPG yield >45% at 220-330°C and 10-35 bar	Mon 3/31/25	Mon 3/31/25			▲ 3/31
25	8.0			Detailed techno-economic and life-cycle analyses	Sun 12/1/24	Mon 3/31/25			40000
26			M8.1	Issue Final TEA report with a Technology Gap Analysis	Mon 3/31/25	Mon 3/31/25			3/31
27		li.	M8.2	Issue Final LCA report	Mon 3/31/25	Mon 3/31/25			♦ 3/31