# A Novel Molten Salt System for CO<sub>2</sub> Based Oxidative Dehydrogenation with Integrated Carbon Capture

Fanxing Li

# **NC State University**

**Project Partners:** West Virginia University and Susteon Inc.

DOE/NETL Project Manager: Gregory Imler



08/14/2023

# Outline

- Project Overview and Technology Background
- Technical Approach and Key Results
- Future development plan
- Summary

# **Project Overview**

*Period of Performance:* 09/01/2020 - 08/31/2023

|                                                              | DOE Funds | Cost Share |
|--------------------------------------------------------------|-----------|------------|
| <b>NC State Univ.</b><br>Dr. Fanxing Li                      | \$519,993 | \$179,577  |
| <b>West Virginia Univ.</b><br>Drs. John Hu and<br>Xingbo Liu | \$300,000 | \$75,000   |
| <b>Susteon Inc.</b><br>Dr. Vasudev Haribal                   | \$180,000 | \$0        |
| Total (\$)                                                   | \$999,993 | \$254,577  |

**Project Objective:** to develop a comprehensive proof-of-concept for the sustainable and cost-effective production of propionic acid, and value added C3/C4 olefins, from  $CO_2$  in power plant flue gas and domestic shale gas resources.

### **Key Milestones**

*500 Cycle Test:* >85% selectivity and 55% yield for ethylene, 85%  $CO_2$  conversion, and 90%  $CO_2$  capture after 500 cycles.

*Refined Reactor Design:* based upon 300+ cycle test of at least four temperatures and three cycle durations for an optimized redox catalyst.

*TEA/LCA Targets:* using optimized experimental results, process model, and pricing of major complements showing profitability at 20% ROI and 25% reduction in energy consumption.





# **Technology Background:** Molten-salt mediated oxidative dehydrogenation (MM-ODH) of ethane



# **NC STATE UNIVERSITY Technology Background:** Molten-salt mediated oxidative dehydrogenation (MM-ODH) of ethane

Molten Salt Mediated CO<sub>2</sub>-ODH:



# **Technology Background:** Molten-salt mediated oxidative dehydrogenation (MM-ODH) of ethane

## CO<sub>2</sub>-Capture:

- 1)  $CO_2$  (in flue gas) + 2MOH  $\rightarrow$  X<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>O
- 2)  $MeO_{x-1} + \frac{1}{2}O_2$  (in flue gas)  $\rightarrow MeO_x$



Section I: Upstream MM-ODH System

Section II: Downstream Hydrocarboxylation Step

# **NC STATE UNIVERSITY Technology Background:** Molten-salt mediated oxidative dehydrogenation (MM-ODH) of ethane



Section I: Upstream MM-ODH System

Section II: Downstream Hydrocarboxylation Step



#### Gao et al, Science Advances 2020, eaaz9339

 $Gao \ et \ al, \ Science \ Advances \ 2022, \ eabo 7343$ 

# Outline

• Project Overview and Technology Background

- Technical Approach and Key Results
- Future development plan
- Summary

# **NC STATE UNIVERSITY Technical Approach**

### Task 2 (Q1-Q4). Redox catalyst synthesis and characterizations (NCSU)

Milestone: Four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750  $^{\circ}$ C, and 75% CO<sub>2</sub> conversion with 85% CO<sub>2</sub> capture.

### Task 3 (Q2-Q11). Redox catalyst optimization (NCSU/WVU)

Milestone: two redox catalysts giving at least giving at least 85% selectivity and 55% yield for ethylene, 80%  $CO_2$  conversion, and 90%  $CO_2$  capture

### Task 4 (Q1-Q4). Techno-economic and life cycle analysis (Susteon)

Milestone: using preliminary results, process model, and literature review showing profitability at 20% ROI and 25% reduction in energy consumption

### Task 5(Q2-Q8). Redox catalyst long-term stability

Milestone: >85% selectivity and 55% yield for ethylene, 85% CO<sub>2</sub> conversion, and 90% CO<sub>2</sub> capture after 500 cycles

### Task 6 (Q5-Q12). TEA update

### Task 7 (Q6-Q12). TEA driven redox catalyst optimizations

Milestone: Refined reactor design based upon 300+ cycle test of at least four temperatures and three cycle durations for an optimized redox catalyst

### Task 8(Q5-Q12). Detailed reactor and process design

Milestone: using optimized experimental results, process model, and pricing of major complements showing profitability at 20% ROI and 25% reduction in energy consumption); compile a commercialization roadmap.

# **Success Criteria**

**Milestone 3.2 (Q4):** Two redox catalysts giving at least giving at least 85% selectivity and 55% yield for ethylene,  $80\% CO_2$  conversion, and  $90\% CO_2$  capture.

**Milestone 4.1 (Q4):** Initial TEA using preliminary results, process model, and literature review showing profitability at 20% ROI and 25% reduction in energy consumption.

**Milestone 5.1 (Q6):** 500 cycle tests on two redox catalysts giving at least 85% selectivity and 55% yield for ethylene, 85% CO<sub>2</sub> conversion, and 90% CO<sub>2</sub> capture after cycling.

**Milestone 8.1 (Q12):** Developing a Final TEA/LCA using optimized experimental results, process model, and pricing of major complements showing profitability at 20% ROI and 25% reduction in energy consumption.

| Perceived Risk                              | Risk Rating   |        |         | Mitigation/Response Strategy                                                                                                                                                 |
|---------------------------------------------|---------------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | Probability   | Impact | Overall |                                                                                                                                                                              |
| Technical/Scope Risks:                      |               |        |         |                                                                                                                                                                              |
| Insufficient MM-ODH catalyst<br>performance | Low           | High   | Med     | Develop a large library of redox catalyst materials and approaches; rationalized design based on molecular insights                                                          |
| Reactor Design for Molten Salts             | Low           | Med    | Med     | Catalyst particle design optimization (formulation and structure) can be<br>incorporated to improve molten salt wetting; learn from existing molten salt<br>reactor designs; |
| Management, Planning, and Over              | rsight Risks: |        |         |                                                                                                                                                                              |
| Delayed personnel ramp-up                   | Low           | Low    | Low     | Sufficient personnel are in place and/or quickly filled (e.g. Ph.D. students) for the project.                                                                               |

# **Risk Mitigation**

# **Project Progress: Experimental Set-up**





In-line QMS

Gas Chromatography

### CO<sub>2</sub>-Capture (Step 1):

 $CO_2$  (in flue gas) +  $X_2O$  (dissolved alkali metal oxide in the molten salt)  $\rightarrow X_2CO_3$ MeO<sub>x-1</sub> + 1/2O<sub>2</sub> (in flue gas)  $\rightarrow MeO_x$ 

#### $CO_2$ -ODH (Step 2)

# **Project Progress: Experimental Set-up**





In-line QMS

Gas Chromatography

### CO<sub>2</sub>-Capture (Step 1):

 $CO_2$  (in flue gas) + X<sub>2</sub>O (dissolved alkali metal oxide in the molten salt)  $\rightarrow$  X<sub>2</sub>CO<sub>3</sub> MeO<sub>x-1</sub> + 1/2O<sub>2</sub> (in flue gas)  $\rightarrow$  MeO<sub>x</sub>

*CO*<sub>2</sub>*-ODH* (*Step 2*)

# **Project Progress: Experimental Set-up**





In-line QMS

Gas Chromatography

### CO<sub>2</sub>-Capture (Step 1):

 $CO_2$  (in flue gas) +  $X_2O$  (dissolved alkali metal oxide in the molten salt)  $\rightarrow X_2CO_3$ MeO<sub>x-1</sub> + 1/2O<sub>2</sub> (in flue gas)  $\rightarrow MeO_x$ 

*CO*<sub>2</sub>*-ODH* (*Step 2*)

# **Project Progress: Experimental Set-up**





In-line QMS

Gas Chromatography

### CO<sub>2</sub>-Capture (Step 1):

 $CO_2$  (in flue gas) +  $X_2O$  (dissolved alkali metal oxide in the molten salt)  $\rightarrow X_2CO_3$ MeO<sub>x-1</sub> + 1/2O<sub>2</sub> (in flue gas)  $\rightarrow MeO_x$ 

*CO*<sub>2</sub>-*ODH* (*Step 2*)

# Project Progress: Experimental Set-up at WVU











West Virginia University.

# Overview of the Key Results

Material Synthesis, Testing, and Characterizations









## **NC STATE** UNIVERSITY Task 2 Redox Catalyst Synthesis and Characterizations

### Porous Oxide Synthesis



| Sample                                               | Pore Volume Estimation<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Estimated Maximum Loading (wt.<br>%) |
|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|
| Nanocast LSF with SBA-15                             | 3.3                                                          | 88%                                  |
| Reactive Grinding LSF with<br>NaCl Removed (Batch 1) | 0.7                                                          | 62%                                  |
| Reactive Grinding LSF with<br>NaCl Removed (Batch 2) | 1.4                                                          | 77%                                  |
| 3DOM LSF                                             | 2.2                                                          | 84%                                  |



#### XRD analysis of the synthesized catalysts

#### **OBSERVATIONS:**

- Carbonate and perovskite phases are compatible;
- Besides 3DOM, reactive grinding and nanocasting were performed at NCSU, all leading to high porosity.



### Methane C6+ C3-C4 Ethylene 100 Hydrocarbon selectivity (%) 80 Target 60 40 20 0 600 1200 3600 Space velocity (hr<sup>-1</sup>)

**Effect of Ethane Space velocity** 

Reactive Performance

| 60%<br>Li <sub>2</sub> CO <sub>3</sub> /<br>LSF | Ethane<br>Conv.<br>(%) | Ethylene<br>Select.<br>(%) | Methane<br>Select<br>(%) | H <sub>2</sub><br>Conv.<br>(%) | CO <sub>2</sub><br>Conv.<br>(%) | CO <sub>2</sub><br>Capture<br>(%) |
|-------------------------------------------------|------------------------|----------------------------|--------------------------|--------------------------------|---------------------------------|-----------------------------------|
| 600                                             | 71.5                   | 71.2                       | 18.4                     | 39                             | 93.7                            | 36.4                              |
| 1200                                            | 70.5                   | 70.6                       | 21.3                     | 27                             | 93.4                            | 44.5                              |
| 3600                                            | 67.5                   | 80.3                       | 12                       | 28                             | 93.8                            | 48.1                              |

- Increase in residence time promotes ethylene side reaction which results in decrease of ethylene selectivity
- Increase in space velocity hydrogen produced would have less time to react with  $CO_2$  in the molten salt, resulting in lower  $H_2$  conversion
- Ethylene yield at 3600 hr<sup>-1</sup> SV is ~55 % <sub>19</sub>

Figure: Hydrocarbon Product distribution during ethane injection (5<sup>th</sup> injection cycle) Catalyst: 60%Li<sub>2</sub>CO<sub>3</sub>@LSF, Temperature: 750 °C

Injection: Reducing agent: 30 sec, Oxidizing agent: 90 sec Oxygenate S.V = 600 hr-1

**WestVirginiaUniversity** 





- According to the dense sample, the electronic resistance is 57.43  $\Omega \cdot cm^2$ .
- Electronic conductivity = $1.22 \times 10^{-3}$  S/cm
- According to the fitting result: y = 62.48x+14.10, when the thickness is 0.702mm, the mixed resistance is 43.86  $\Omega \cdot cm^2$
- Electron-oxygen mixed conductivity =1.60x10<sup>-3</sup> S/cm
- Oxygen conductivity can be calculated as 3.8x10<sup>-4</sup> S/cm

Small variables such as the fineness of the zirconia powder and the uniformity of the graphite-gold paste mixture can lead to poor repeatability or unstable test data, making experiments challenging.

# **NC STATE UNIVERSITY** Task 3: Redox Catalyst Optimizations

Increasing the mol% of  $Li_2CO_3$  improves ethane conversion and ethylene yield and decreases  $CO_2$  conversion (except for 100%  $Li_2CO_3$ ).



# **NC STATE UNIVERSITY** Task 3 Redox Catalyst Optimizations

Increasing the mol% of Na<sub>2</sub>CO<sub>3</sub> does not significantly impact MM-ODH performance.



# **NC STATE UNIVERSITY** Task 3 Redox Catalyst Optimizations

Increasing the mol% of K<sub>2</sub>CO<sub>3</sub> decreases ethane conversion but increases CO<sub>2</sub> conversion



# **NC STATE UNIVERSITY** Task 3 Redox Catalyst Optimizations

| Catalyst                   | <b>Reaction Metric</b>     | Current Performance | DOE Milestone     |
|----------------------------|----------------------------|---------------------|-------------------|
|                            | Temperature                | 750°C               | <u>&lt;</u> 750°C |
|                            | Ethylene Yield             | ~55%                | <u>&gt;</u> 50%   |
| 1) Molten LNK-LSF          | Ethylene Selectivity       | ~81%                | <u>&gt;</u> 80%   |
| slurry                     | CO <sub>2</sub> Conversion | ~93%                | <u>&gt;</u> 75%   |
|                            | CO <sub>2</sub> Capture    | ~50%                | <u>&gt;</u> 85%   |
|                            | Temperature                | 800°C               | <u>&lt;</u> 750°C |
| 2) Molten LNK bath with    | Ethylene Yield             | 69.5%/64.4%         | <u>&gt;</u> 50%   |
| ,<br>two compositions (80- | Ethylene Selectivity       | 86.3%/89.1%         | <u>&gt;</u> 80%   |
| 10-10 and 100-0-0)*        | CO <sub>2</sub> Conversion | 91.4%/80.2%         | <u>&gt;</u> 75%   |
|                            | CO <sub>2</sub> Capture    | >85%                | <u>&gt;</u> 85%   |

\*x mol%  $Li_2CO_3 - y$  mol%  $Na_2CO_3 - z$  mol%  $K_2CO_3$ 

**Milestone 2.2** *Catalyst Synthesis Screening*: Report four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO<sub>2</sub> conversion with 85% CO<sub>2</sub> capture)

# **NC STATE** UNIVERSITY Task 5 Long-Term Stability of the Molten Salt (60 – 20 – 20)



### Excellent stability was observed throughout the 500 reaction cycles

# **NC STATE UNIVERSITY** Task 7 TEA-driven redox catalyst optimizations



■ 750 C, 25 min 🛽 775 C, 15 min ■ 775 C, 25 min 🖃 775 C, 30 min 🛛 800 C, 15 min ■ 800 C, 25 min 🚍 800 C, 30 min 🖾 825 C, 15 min ■ 825 C, 25 min 🚍 825 C, 30 min

Ethylene yield improves with temperature and MM-ODH is pretty flexible with cycle time

### Task 7 Redox Catalyst Optimizations



27

Susteon

### Process Modeling in AspenPlus™



Susteon

### Process Modeling in AspenPlus™



Susteon

Process Modeling in AspenPlus™

Simulating the MM-ODH Process Basis: 48.5 metric ton/day of ethane feed



#### Estimating Cost of Ethylene Production

Basis: 48.5 metric ton/day of ethane feed



### **Estimating Cost of Ethylene Production**

Basis: 48.5 metric ton/day of ethane feed



- ODH/LSF Reduction: ethane is converted to ethylene, LSF material released oxygen and the LNK carbonate reduces CO<sub>2</sub> to CO
- 2. **Purge**: Nitrogen and/or another inert gas is used to purge the reactor of combustible/reducing gases present. Steam can also be considered for this step
- **3.** LNK Carbonation and LSF Oxidation: O<sub>2</sub> and CO<sub>2</sub> present in flue gas is used to re-oxidize the LSF particle and carbonate the LNK material, respectively.
- 4. **Purge:** Steam or an inert gas is used to remove oxidizing gases from the reactor before repeating step 1
  - Ethane-to-ethylene yield: 63%
  - $\Box$  CO<sub>2</sub> capture efficiency: **60%**
  - O<sub>2</sub> uptake: 0.35 wt.% LSF
  - $\Box$  H<sub>2</sub> conversion in SHC: **50%**

Susteon

Susteon

| Fabrication cost estimate                    |     |                 |  |  |  |  |  |  |  |
|----------------------------------------------|-----|-----------------|--|--|--|--|--|--|--|
| Bed Diameter                                 | m   | 3.00            |  |  |  |  |  |  |  |
| Bed height                                   | m   | 4.21            |  |  |  |  |  |  |  |
| Packing Height (bottom and top)              | m   | 0.50            |  |  |  |  |  |  |  |
| Total Height                                 | m   | 4.71            |  |  |  |  |  |  |  |
| Refractory Insulation Thickness              | m   | 0.20            |  |  |  |  |  |  |  |
| Reactor ID                                   | m   | 3.41            |  |  |  |  |  |  |  |
| Reactor Volume                               | m3  | 42.89           |  |  |  |  |  |  |  |
| Refractory Volume                            | m3  | 13.33           |  |  |  |  |  |  |  |
| Fabrication Cost (2013 Dollars), per reactor | USD | \$1,098,089.30  |  |  |  |  |  |  |  |
| Total Fabrication cost (2023)                | USD | \$24,772,894.52 |  |  |  |  |  |  |  |

### **Estimating Cost of Ethylene Production**



#### Reference Ethylene Price: \$700-\$1000/t (2020-2022)

| Cost Component         | Annual Charges | Unit Cost         | Contribution     |
|------------------------|----------------|-------------------|------------------|
| Cost Component         | (\$MM/year)    | (\$/ton ethylene) | (without credit) |
| Capital costs          | 72.4           | 223               | 38%              |
| Power/Utilities        | 28.8           | 89                | 15%              |
| Consumables/Feedstocks | 79.5           | 245               | 41%              |
| O&M                    | 12.2           | 38                | 6%               |
| CO credit              |                | -77               |                  |
| Total                  | 193.0          | 517               | 100%             |

□Downstream separation: from AspenPlus™

□ Total overnight cost: **\$362 million** 

Highlights

Capital intensity of **\$1110/TPY ethylene** 

Large scale (1.5MM TPY) ethane crackers: **\$1100/TPY** 

Reactor system cost: **\$87 million BEC (2023 estimate)** 

□~85% of total cracker capital: fired heaters

Generation For MM-ODH: 55% capital upstream

# **NC STATE** UNIVERSITY Task 8 Techno-Economic and Lifecycle Analysis Susteon Estimating Net kg CO2e emitted per /kg ethylene

- □ Main contributing streams: ethane feed (0.4 kg CO<sub>2</sub>e/kg ethane), production of redox catalysts, CO<sub>2</sub> utilized from flue gas, energy required in the process, methane, CO<sub>2</sub> from construction of units
- Scenario I : reactor endothermicity provided by methane combustion (60% energy transfer efficiency)
  Scenario II: renewable electricity is utilized (solar electricity emitting 25 kgCO<sub>2</sub>e per MWh)
- □ An average annual capacity of around 90% (330 operational days).
- □ Embodied emissions, associated with steel and concrete structures: 1% of total emissions, over an economic life of 20-years
- $\Box$  500 tCO<sub>2</sub>e/yr. from redox catalysts based on the emissions of Li<sub>2</sub>CO<sub>3</sub> productions (cradle-to-gate)
- $\Box$  Credit for utilizing CO<sub>2</sub> from flue gas
- □ Reference case: ethane steam cracking with 1.2 1.5 kg CO<sub>2</sub>e/kg C<sub>2</sub>H<sub>4</sub>

### Estimating Net kg CO<sub>2</sub>e emitted per /kg ethylene

### Scenario I

Reactor energy supplied **by methane combustion** at 60% efficiency, other electricity demands supplied by solar energy with negligible energy inefficiencies



Susteon

#### Task 8 Techno-Economic and Lifecycle Analysis Susteon **NC STATE UNIVERSITY**

Estimating Net kg CO<sub>2</sub>e emitted per /kg ethylene

### Scenario II

All electricity demands supplied by solar energy with negligible energy inefficiencies



36

# Outline

- Project Overview and Technology Background
- Technical Approach and Key Results
- Future development plan
- Summary

# Plans for Future Development

### Future work beyond the project:

- Identification of specific application scenarios through discussions with potential industrial partner(s);
- Detailed reaction medium and catalyst cost and scalability study;
- Detailed system design and costing;

### Scale-up potential:

- Further scale up/pilot testing (TRL-5/6, 10 100 kg/day);
- Scale out via molten salt based ceramic membrane.

# Summary

- Perovskite oxides with high porosity were prepared via various methods;
- Oxide molten salt compatibility were verified and reactive performance exceeded the CO<sub>2</sub> and ethane conversion targets;
- Molten salt with optimized compositions alone were also shown to be highly effective;
- Various reaction medium compositions were tested, with >85% CO<sub>2</sub> capture, >90% CO<sub>2</sub> conversion, >90% ethylene selectivity, and ~66% ethylene yield. Meeting the proposed milestone;
- 500 cycle confirmed the long-term stability of the system;
- TEA indicates potential for notable energy and CO<sub>2</sub> savings, as well as significant economic benefits;
- All the key milestones have been met.





# Acknowledgements





NCSU:

Luke Neal, Kyle Vogt-Lowell, Dennis Chacko

WVU:

John Hu, Sonit Balyan, Xingbo Liu, Wenyuan Li, Shaoshuai Chen *Susteon:* 



Naomi O'Neil Greg Imler

**Susteon** 

WestVirginiaUniversity.

Vasudev Haribal, Raghubir Gupta, Andrew Tong, Emma Li

40

# Thanks for the support! Questions or suggestions?

# **NC STATE UNIVERSITY** Project Schedule and Milestones

|                                                                                |              | Stage I    |    |    | ge I Stage II |           |    |            |            |      |     |            |     |            |
|--------------------------------------------------------------------------------|--------------|------------|----|----|---------------|-----------|----|------------|------------|------|-----|------------|-----|------------|
| Task Name                                                                      | Team Member  | Q1         | Q2 | Q3 | <b>Q4</b>     | <b>Q5</b> | Q6 | <b>Q</b> 7 | <b>Q</b> 8 | Q9 ( | Q10 | Q11        | Q12 | Q13        |
| Task 1 Project Management and Planning                                         | NCSU/Susteon |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 1.1: PMP modification                                                | NCSU         | ♦          |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 1.2: TMP                                                             | NCSU/Susteon | $\diamond$ |    |    |               |           |    |            |            |      |     |            |     |            |
| Task 2.0: Redox Catalyst Synthesis and Characterizations                       | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 2.1 Redox Catalyst Synthesis                                           | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 2.2 Characterization of the Redox Catalysts                            | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 2.2: Catalyst Synthesis Screening                                    | NCSU         |            | 0  |    |               |           |    |            |            |      |     |            |     |            |
| Task 3.0: Redox Catalyst Optimization                                          | WVU/NCSU     |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 3.1. Determination of Rate Limiting Step                               | WVU          |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 3.2. Redox Catalyst Optimization                                       | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 3.2: Optimized Catalyst                                              | NCSU         |            |    |    | 0             |           |    |            |            |      |     |            |     |            |
| Task 4.0: Techno-Economic and Lifecycle Analysis                               | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 4.1 Process Model Refinement and Analysis                              | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 4.1: Initial TEA                                                     | Susteon      |            |    |    | 0             |           |    |            |            |      |     |            |     |            |
| Subtask 4.2 Analysis of Alternative Commercial Products                        | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Task 5.0: Redox Catalyst: Long Term Stability and Flue Gas Contaminant Studies | NCSU/WVU     |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 5.1. Long -Term Testing of Redox Catalysts                             | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 5.1: 500 Cycle Tests                                                 | NCSU         |            |    |    |               |           | 0  |            |            |      |     |            |     |            |
| Subtask 5.2 Empirical Kinetic Parameters Analysis and Validation               | WVU          |            |    |    |               |           |    | 5          |            |      |     |            |     |            |
| Task 6.0: Techno-Economic and Life Cycle Analyses Update                       | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Task 7.0: Redox Catalyst: Economics Driven Optimizations                       | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Subtask 7.1 Techno-Economic Redox Catalyst Optimization                        | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 7.1: Refined reactor design                                          | NCSU         |            |    |    |               |           |    |            |            |      |     | $\diamond$ |     |            |
| Subtask 7.2 Synthesis Optimization for Scale-up                                | NCSU         |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Task 8.0: Development of Detailed Reactor and Process Design                   | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     |            |
| Milestone 8.1 Final LCA/TEA                                                    | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     | $\diamond$ |
| Milestone 8.2: Commercialization Road Map                                      | Susteon      |            |    |    |               |           |    |            |            |      |     |            |     | $\diamond$ |

# **Appendix: Project Organizational Structure**



# Appendix: Project Schedule

|                                                                                |              | Stage I     |   |  |    | Stage II |    |      |     |         |       |     |  |  |
|--------------------------------------------------------------------------------|--------------|-------------|---|--|----|----------|----|------|-----|---------|-------|-----|--|--|
| Task Name                                                                      | Team Member  | Q1 Q2 Q3 Q4 |   |  | Q4 | Q5 (     | 26 | Q7 Q | 3 Q | Q10 Q12 | L Q12 | Q13 |  |  |
| Task 1 Project Management and Planning                                         | NCSU/Susteon |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 1.1: PMP modification                                                | NCSU         | ٥           |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 1.2: TMP                                                             | NCSU/Susteon | ٥           |   |  |    |          |    |      |     |         |       |     |  |  |
| Task 2.0: Redox Catalyst Synthesis and Characterizations                       | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 2.1 Redox Catalyst Synthesis                                           | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 2.2 Characterization of the Redox Catalysts                            | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 2.2: Catalyst Synthesis Screening                                    | NCSU         |             | ٥ |  |    |          |    |      |     |         |       |     |  |  |
| Task 3.0: Redox Catalyst Optimization                                          | WVU/NCSU     |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 3.1. Determination of Rate Limiting Step                               | WVU          |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 3.2. Redox Catalyst Optimization                                       | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 3.2: Optimized Catalyst                                              | NCSU         |             |   |  | ٥  |          |    |      |     |         |       |     |  |  |
| Task 4.0: Techno-Economic and Lifecycle Analysis                               | Susteon      |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 4.1 Process Model Refinement and Analysis                              | Susteon      |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 4.1: Initial TEA                                                     | Susteon      |             |   |  | ٥  |          |    |      |     |         |       |     |  |  |
| Subtask 4.2 Analysis of Alternative Commercial Products                        | Susteon      |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Task 5.0: Redox Catalyst: Long Term Stability and Flue Gas Contaminant Studies | NCSU/WVU     |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 5.1. Long -Term Testing of Redox Catalysts                             | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 5.1: 500 Cycle Tests                                                 | NCSU         |             |   |  |    |          | ٥  |      |     |         |       |     |  |  |
| Subtask 5.2 Empirical Kinetic Parameters Analysis and Validation               | WVU          |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Task 6.0: Techno-Economic and Life Cycle Analyses Update                       | Susteon      |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Task 7.0: Redox Catalyst: Economics Driven Optimizations                       | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Subtask 7.1 Techno-Economic Redox Catalyst Optimization                        | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 7.1: Refined reactor design                                          | NCSU         |             |   |  |    |          |    |      |     | \$      |       |     |  |  |
| Subtask 7.2 Synthesis Optimization for Scale-up                                | NCSU         |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Task 8.0: Development of Detailed Reactor and Process Design                   | Susteon      |             |   |  |    |          |    |      |     |         |       |     |  |  |
| Milestone 8.1 Final LCA/TEA                                                    | Susteon      |             |   |  |    |          |    |      |     |         |       | ♦   |  |  |
| Milestone 8.2: Commercialization Road Map                                      | Susteon      |             |   |  |    |          |    |      |     |         |       | ♦   |  |  |

# Task 7 TEA driven redox catalyst optimizations

| Temperature (°C) | Cycle Time (min) | Ethane Conversion | Ethylene Yield | C <sub>2</sub> H <sub>4</sub> Selectivity | C <sub>2+</sub> Selectivity | H <sub>2</sub> Conversion | CO <sub>2</sub> conversion |
|------------------|------------------|-------------------|----------------|-------------------------------------------|-----------------------------|---------------------------|----------------------------|
|                  | 15               | -                 | -              | -                                         | _                           | _                         | -                          |
| 750              | 25               | 46.80%            | 44.60%         | 95.40%                                    | 97.80%                      | 33.00%                    | 86.20%                     |
|                  | 30               | -                 | -              | -                                         | -                           | -                         | -                          |
|                  | 15               | 63.30%            | 59.00%         | 93.20%                                    | 96.70%                      | 41.50%                    | 77.70%                     |
| 775              | 25               | 62.30%            | 58.30%         | 93.60%                                    | 96.70%                      | 34.70%                    | 95.70%                     |
|                  | 30               | 63.20%            | 59.00%         | 93.40%                                    | 96.70%                      | 38.10%                    | 92.80%                     |
|                  | 15               | 73.40%            | 66.50%         | 90.60%                                    | 95.10%                      | 45.90%                    | 92.00%                     |
| 800              | 25               | 72.90%            | 66.00%         | 90.60%                                    | 95.00%                      | 37.10%                    | 92.20%                     |
|                  | 30               | 73.20%            | 66.20%         | 90.50%                                    | 95.00%                      | 36.80%                    | 96.10%                     |
|                  | 15               | 85.30%            | 73.80%         | 86.50%                                    | 91.80%                      | 41.30%                    | 94.50%                     |
| 825              | 25               | 84.60%            | 73.20%         | 86.50%                                    | 91.80%                      | 36.00%                    | 94.50%                     |
|                  | 30               | 84.20%            | 73.30%         | 87.00%                                    | 92.00%                      | 41.70%                    | 90.30%                     |

Ethylene yield improves with temperature and MM-ODH is pretty flexible with cycle time



**Reactive Performance** 

**Milestone 2.2** *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO<sub>2</sub> conversion with 85% CO<sub>2</sub> capture)

West Virginia University.

Porous Oxide Synthesis

**Objective:** Develop a 3-dimensional ordered macro-porous (3DOM) perovskite  $La_{0.8}Sr_{0.2}FeO_3(LSF)$  to enhance pore volume



SEM image of the as-synthesized PMMA



### **OBSERVATIONS:**

- 3DOM LSF was synthesized using polymethyl methacrylate (PMMA) as a soft template
- Synthesized PMMA in Figure demonstrated the ordered PMMA microsphere array formed by PMMA microspheres with the uniform diameter (~300 nm).

### Task 2 Redox Catalyst Synthesis and Characterizations Porous Oxide Synthesis



(a-d) SEM images of LSF prepared at different calcination temperature and e) XRD patterns of LSFO#9 prepared at 500 and 700  $^{\circ}$ C.

Vest Virginia University.

**OBSERVATIONS:** 

- Targeted 3DOM structure of LSF is temperature sensitive
- When the calcination temperature is 500 °C, the 3DOM structure kept well but no crystal structure was formed (Figure (c)).
- High temperatures negatively impact the 3DOM structure as shown in Figure (b) and (c)
- Some 3DOM structure was retained at 800 °C, but a large part of these structure was affected (Figure (d)).

Increasing the mol% of  $K_2CO_3$  decreases ethane conversion and ethylene yield and improves  $CO_2$  conversion.



# **Effect of CO<sub>2</sub> Space velocity**

Reactive Performance



Figure: Hydrocarbon Product distribution during ethane injection (5<sup>th</sup> injection cycle)

Catalyst: **60%Li<sub>2</sub>CO<sub>3</sub>@LSF**, Temperature: 750 °C Injection: Reducing agent: 30 sec, Oxidizing agent: 90 sec Ethane S.V = 3600 hr-1

₩estVirginiaUniversity.

• An increase in CO<sub>2</sub> space velocity leads to less residence time to replenish molten carbonate salt which results in decrease in CO<sub>2</sub> capture of the molten salt

### **Reactive Performance**



### **Effect of oxygenate molecule**

| 60%                               | Ethane | Ethylene | Methane | H <sub>2</sub> | CO <sub>2</sub> | CO2     |  |
|-----------------------------------|--------|----------|---------|----------------|-----------------|---------|--|
| Li <sub>2</sub> CO <sub>3</sub> / | Conv.  | Select.  | Select  | Conv.          | Conv.           | Capture |  |
| LSF                               | (%)    | (%)      | (%)     | (%)            | (%)             | (%)     |  |
| CO <sub>2</sub>                   | 68     | 80       | 12      | 29             | 93.8            | 48      |  |
| Flue                              | 85     | 72       | 20      | 32             | 93.7            | 39      |  |
| gas                               |        |          |         |                |                 |         |  |

• Decrease in  $CO_2$  capture is observed for the catalyst system oxidized with flue gas because the content of  $CO_2$  is low in flue gas

• Increase in ethane conversion is observed when catalyst is oxidized with flue gas

Figure: Hydrocarbon Product distribution during ethane injection (5<sup>th</sup> injection cycle)

Catalyst: **60%Li<sub>2</sub>CO<sub>3</sub>@LSF**, Temperature: 750 °C Injection: Reducing agent: 30 sec, Oxidizing agent: 90 sec Oxygenate S.V = 600 hr-1, Reducing agent S.V = 3600 hr<sup>-1</sup>

West Virginia University.

#### Three sample assembly schemes investigated



- a) U-tube: Quartz U-tubes used to contain pure molten salts, but corroded by molten salt samples, and shattered during molten-solidification transition.
- **b) Straight Tube:** The height of the sleeved sample in the straight alumina tube will change during the test, slow testing gas/sample interaction resulting in long and inaccurate results.
- c) Trough crucible: gold (or platinum) paste and gold wire on both ends. After the test, the gold (or platinum) paste melt in the sample and interfere with the test results.
- **d) Standalone button:** Zirconia and molten salt mixture at a mass fraction of 6:4 to provide sample integrity. Gold paste with gold wires on both sides. Most reliable results from this setting.

WestVirginiaUniversity.

### Standalone button sample Schematic diagram





When stable, mixed oxygen, electronic, and interface reaction resistance, extrapolation to separate interface resistance from mixed oxygen & electronic resistance

### Equivalent circuit

Mixed resistance: Oxygen ion resistance//electronic resistance + interface resistance



- Measure one dense sample to obtain the electronic resistance.
- Test 3 different thickness porous samples to obtain the mixed interface resistance and oxygen//electronic resistance.

# **NC STATE UNIVERSITY** Task 7 Redox Catalyst Optimizations (Composite Catalysts)

- Composite catalysts synthesized using LSF synthesized from reactive grinding, calcined at 700°C
  - Estimated pore volume ~ 0.6 mL g<sup>-1</sup>, max weight loading ~ 50 wt. %
- 45% weight molten salt with varying molar compositions of carbonate, ball milled and calcined
- 2.5 g, 425-850  $\mu$ m, GHSV = 150 h<sup>-1</sup>, 20% C<sub>2</sub>H<sub>6</sub>/Ar, flue gas regeneration
- Carbonate decomposition is observed during Ar purge steps
- Hydrogen is generated upon introduction of flue gas
  - Hypothesized to be partial reoxidation of LSF by steam generated from recarbonation of alkali hydroxides (or alkali hydroxide decomposition)
- All of the samples exhibited ~100% O<sub>2</sub> uptake (~0.15% wt LSF)

## Task 7 Redox Catalyst Optimizations



### Process Modeling in AspenPlus™

