# Porous Catalytic Polymers for Simultaneous CO<sub>2</sub> Capture and Conversion to Value-Added Chemicals

FWP-FEAA421-FY23

Michelle K. Kidder Oak Ridge National Laboratory

2023 Carbon Management Research Project Review Meetingg August 28 – September 1, 2023

# **Project Objectives**

- Overall Project Objectives
  - Advance the TRL (2 to 4) through combined experimental and modeling to enhance the efficiencies while assessing the TEA/LCA of a dual functional catalytic porous polymer for simultaneous capture and conversion of CO<sub>2</sub> to value added chemicals (formic acid)
    - Establish CO<sub>2</sub>-philicity and selectivity
    - Scale material 50x
    - Establish critical performance attributes (CPAs) for capture & conversion efficiency, temp, pressure, etc.
      - » batch to bed reactor
    - TEA/LCA
  - Funding \$1M/year, 3 years
  - 10/1/2021 9/30/2024



## Team-ORNL and NETL



## **Design Considerations for CO<sub>2</sub> Reduction to Formic Acid**



current materials.

## Pathway to Products: Chemical Targets

Potential to upgrade value of  $CO_2$  by over 35 times (\$50 to \$1800/ton) into a zero-carbon chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.



### Hybrid Systems for a Holistic Approach



# **Project goals**

| 3-year goals                                                                                                                                                                                                                                                                        | Polymer Catalyst<br>Scale up | Batch to Bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Process Scale up                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>TRL 2 to 4</li> <li>Year 1</li> <li>Synthesis scale up</li> <li>Determine catalyst efficiencies <ul> <li>Kinetic and thermo. models</li> </ul> </li> <li>MFIX and CFD model of CCR-best design</li> <li>Year 2</li> <li>Batch to flow bed reactor; pellet forms</li> </ul> | <text></text>                | <ul> <li>Increase efficiency<br/>(decrease catalyst<br/>content/cheaper<br/>cat.)</li> <li>50 mg working<br/>size to #grams</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Demonstrate</li> <li>bench flow<br/>reactor operation</li> <li>Process scale<br/>simulation</li> <li>TEA/LCA results<br/>and guidelines</li> </ul> |
| <ul> <li>Optimize CPAs         <ul> <li>packed bed<br/>models to inform<br/>MFIX</li> </ul> </li> <li>Year 3</li> </ul>                                                                                                                                                             |                              | Pressure/gas feed line<br>vent fill line<br>circulation<br>pump lineater<br>line to pump line to pump line to pump lineater<br>line to pump line to | HRSS Flue Go                                                                                                                                                |

computer control + data acquisition

purge gas

condenser product

collection

- Cost analysis •
- Bench to •

demonstration 7

# **Desirable Properties of Material**

- Simple/affordable material with process integration
- High surface area and microporosity volume increased contact with active sites
- Selective for CO<sub>2</sub>
- Stable and recyclable
- Build rigidity into the structure to open porosity and accessibility of active sites
- 3° nitrogen for covalent bound metal active site
- Ease of recovery and reutilization for sustainability and environmental impact





Larger, flexible structure for porosity distribution and potential swelling



# **Polymer catalyst SEM/EDS**



- Particles are random size
- Particles appear like "flat" sheets
- Ruthenium distributed well, and near nitrogen sites.

### • Developing porous polymer catalysts

- Scaled one to 1 kg
- Analysis of
  - Sorption
  - Thermodynamics
  - Kinetics



**√** EDS

PIM-MB-TB

# CO<sub>2</sub> Sorption at Temp & Pressure



- Single gas measurement with only CO<sub>2</sub> present
- The CO<sub>2</sub> sorption capacity decreased with increased temperature
- The PIM-MB-TB-RuClx has a lower sorption capacity than the pure PIM-MB-TB (not Ru mass corrected)
- At low pressure, the sorption isotherm is nearly the same for both the pure PIM-MB-TB and the PIM-MB-TB-RuClx

# **CO<sub>2</sub> Sorption Gravimetric Rate**



- Single gas measurement with only CO<sub>2</sub> present. Gas dosed over time
- The CO<sub>2</sub> absorbs into the sample at a similar rate as the gas dosing
- At 3 different dosing rates, the CO<sub>2</sub> is absorbed at a similar rate as the dosing indicating a fast sorption rate (<2 min)

# **Kinetics using Volumetric "dump"**



- Single gas measurement with only CO<sub>2</sub> present. Gas dosed immediately
- The CO<sub>2</sub> is absorbed within approximately 1 min
- The PIM and the PIM-Ru show similar uptake kinetics at 1 bar and 25  $^{\circ}$ C
- The sorption kinetics are similar for MB and SBF PIM samples

### Lab Scale Testing and Model Validation



### Develop CFD model and Physical Model for model validation

#### Lab Scale Test Facility

- Design, Construction,
   Shakedown with 13x Zeolite
   Sorbent completed
- Extensive Fixed-bed
   Breakthrough Tests have
   been completed for
   validation of CFD model
   parameters
  - Heat transfer
  - Adsorption/desorption kinetics
  - Heat release
- Rig is ready for testing with candidate Ru-PIM sorbents





PCPCC





prous Catalytic Polymer for Simultaneous Capture nd Conversion to Value Added Chemicals

### Lab Scale Testing and Model Validation



### Develop CFD model and Physical Model for model validation

#### **CFD Model Developed and Exercised**

• A kinetic model was derived from data provided by ORNL testing

 $\frac{dm_{CO2}}{dt} = k(q_e - q_t)^2 m_{particle} X_{PIM}$ 

where,  $q_e = 0.0422 mg CO2/mg PIM$  and k = 83.996 mg/min

- A detailed CFD setup for Ru-PIM fixed bed was created using the TFM model in ANSYS Fluent to simulate the CO<sub>2</sub> adsorption cycle
- The total mass of Ru-PIM in the simulated bed was 15 gm
- A mixture of N<sub>2</sub> and CO<sub>2</sub> (4 %) entered the bed from the top and the inlet flow rate was 10 slpm. Inlet gas temperature was 25 °C









prous Catalytic Polymer for Simultaneous Capture ad Conversion to Value Added Chemicals

### Model Extended to Fluidized Bed/Riser System



## Model Extended to Fluidized Bed/Riser System

#### Develop CFD model and Physical Model for model validation

#### A Bench-Scale Fluid Bed/Riser Adsorber Model has been developed

- A fluidized bed/riser CO<sub>2</sub> adsorber reactor model (shown right) was developed using the CFD-DEM approach in NETL's *MFiX* software
- CO<sub>2</sub> saturated Ru-PIM particles leaving through the outlet are added to the inlet as fresh Ru-PIM particles to mimic the regeneration process
- The ORNL-supplied rate model has been used
- The total mass of Ru-PIM in the simulated bed was 36 gm.
- A NGCC flue gas mixture of N<sub>2</sub> (64.83%), CO<sub>2</sub> (11.19%), O<sub>2</sub> (11.95%), H<sub>2</sub>O (9.82%) and Ar (2.21%) flows into the bottom inlet
- Inlet gas velocity and temperature was 2.8 m/s and 110 °C, respectively.



## **Catalytic Results (select)**

| Catalyst  | CO <sub>2</sub><br>(bar) | H <sub>2</sub><br>(bar) | Temp<br>(C) | TON* |
|-----------|--------------------------|-------------------------|-------------|------|
| Ru-13 wt% | 30                       | 30                      | 40          | 510  |
|           | 40                       | 20                      | 40          | 654  |
|           | 20                       | 40                      | 40          | 376  |
| Ru-5 wt%  | 30                       | 30                      | 40          | 1088 |
|           | 40                       | 20                      | 40          | 967  |
|           | 20                       | 40                      | 40          | 714  |







- 100 mg polymer catalyst: 11 mL base/solvent
- TON = mol of reactant consumed/mol of catalyst
- Decreased loading decreases cost
- Other metals? Solvents?

### CO<sub>2</sub> Conversion – Pressure changes 40 °C 60 bar



## **Comparison of T, P**



#### Function of constant temperature varied pressure



| Temperature<br>(°C) | Total<br>pressure<br>(bar) at 30 C | TON  |
|---------------------|------------------------------------|------|
| 40                  | 60                                 | 510  |
| 30                  | 60                                 | 1160 |
| 30                  | 100                                | 1947 |

# Kinetic model developed and validated using batch reactor data





## **Polymer Catalyst Stability**



### **Material Selectivity Performance**



- Notable: pore size ranged 7-14 Angstrom; ideal for  $H_2$  storage, and  $CO_2$  adsorption
- Isoteric heats of adsorption ca. 28 kJ/mol for physisorption of  $CO_2$

Patent Granted: Kidder, M. K. Catalytic porous polymer for selective reduction of CO<sub>2</sub>. U.S. Patent Application No. 18/100,664, 7/24/2023.

# **Initial Results of Flow Reactor**



- Method development on-going
- Pelletized; 50-200 µm
- $\frac{1}{4}$ " x 125 mm tube; 0.5 g Catalyst
  - 2.5 mm glass bead void volume (back flow prevention)
- 60 bar CO2:H2 1:1; 40 C; Flow 1 ml/min
- 5% CO2 conversion
- 25  $g_{form}/g_{cat}$ -d

# Summary Slide

- Scaling the polymer and catalyst has been reproducible ۲
  - 1 kg of polymer produced •
  - Decent carbon capacities of 4-7 mmol/g CO<sub>2</sub> at 40-54 bar; model ٠ validation
  - Batch reactions; <40 °C and >60 bar are current ideal conditions (batch) ٠
    - Reactions complete in 24 h;
      - Pressure too low to continue and/or surface coated with product; • packed bed/flow will over come this issue
    - Less catalyst increased TON •
    - Selective for CO<sub>2</sub> (upstream); ease of separation (downstream)
      - Pure product
- Initial packed bed testing and simulations ۲
- Future plan:
  - Packed bed experiments feed back with models; flow rate and resonance ۲ time, pellet development 24
  - TEA/LCA ۲

# Acknowledgements



Fossil Energy and Carbon Management

- Lei Hong (NETL, TM)
- Amishi Claros (FECM)
- Aaron Fuller (FECM)







## **Organization Chart**



## **Gantt Chart**

|                  |        |                                                                                                                     |            |            | BP1 (9/01/21-9/30/22) |          |           | BP2 (10/01/22-09/30/23) |           |          | BP3 (10/01/23-09/30/24) |           |           |          |           |           |
|------------------|--------|---------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------|----------|-----------|-------------------------|-----------|----------|-------------------------|-----------|-----------|----------|-----------|-----------|
| Organizations Ta | Task # | Tasks and Subtasks (ST)                                                                                             | Start      | End        | Q1                    | Q2       | Q3        | Q4                      | Q5        | Q6       | Q7                      | Q8        | Q9        | Q10      | Q11       | Q12       |
|                  | ruon " |                                                                                                                     | data       | data       | 9/01/21-              | 1/01/22- | 04/01/22- | 07/01/22-               | 10/01/21- | 1/01/23- | 04/01/23-               | 07/01/23- | 10/01/23- | 1/01/24- | 04/01/24- | 07/01/24- |
|                  |        |                                                                                                                     | uate       | uate       | 12/31/21              | 03/31/22 | 06/30/22  | 09/30/22                | 12/31/22  | 03/31/23 | 06/30/23                | 09/30/23  | 12/31/23  | 03/31/24 | 06/30/24  | 09/30/24  |
| ORNL-Kidder      | Task 1 | Project management and planning                                                                                     | 9/1/2021   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| ORNL             | Task 2 | Scale up Production of PIM-TB                                                                                       | 9/1/2021   | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Daemen           |        | ST 2.1. Custom design synthetic reactor                                                                             | 9/1/2021   | 3/31/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Kidder           |        | ST 2.2. Optimization of reaction scale from 20g to 100g                                                             | 4/1/2022   | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 2.3. Characterization and evaluation of PIMs                                                                     | 4/1/2022   | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| ORNL             | Task 3 | Construct and Commission Dedicated Bench Scale Reactor                                                              | 10/1/2021  | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Mahurin          |        | ST 3.1. Design and purchase of reactor                                                                              | 10/1/2021  | 4/31/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 3.2. Testing of reactor flow and various particle size PIMs                                                      | 2/1/2022   | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 3.3. Analysis of Reaction Products with various PIMs and process conditions                                      | 4/1/2022   | 6/30/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| ORNL             | Task 4 | Measure and Optimization of Critical Performance Attributes (CPAs) for CO <sub>2</sub> Capture                      | 6/1/2022   | 3/31/2023  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Kidder           |        | ST 4.1. Extract and complie key parameters to model performance                                                     | 6/1/2022   | 3/31/2023  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Mahurin          |        |                                                                                                                     |            |            |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Adkins           |        |                                                                                                                     |            |            |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| ORNL             | Task 5 | Measure and Optimization of Critical Performance Attributes (CPAs) for CO <sub>2</sub> Conversion to Formic Acid    | 7/1/2022   | 3/31/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Mahurin          |        | ST 5.1. Measure temp/pressure residence time kinetic envelope for the reaction                                      | 7/1/2022   | 12/31/2022 |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Adkins           |        | ST 5.2. Down selected parameters identified                                                                         | 12/31/2022 | 9/30/2023  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 5.3. Develop and verify predictive models                                                                        | 4/1/2023   | 3/31/2024  |                       |          |           | 1                       |           |          |                         |           |           |          |           |           |
| ORNL             | Task 6 | Optimization of PIM Design for capture and conversion                                                               | 10/1/2022  | 6/30/2024  |                       |          |           | i                       |           |          |                         |           | i         |          |           |           |
| Kidder           |        | ST 6.1. Understand impact of particle structure on CP parameters                                                    | 7/1/2022   | 6/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Das              |        | ST 6.2 Assess CAPEX and TEA                                                                                         | 6/30/2023  | 6/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| NETL             | Task 7 | Computational modeling of CO <sub>2</sub> capture step and particle-gas separation step to evaluate capture efficie | 10/1/2021  | 9/30/2024  |                       |          |           | 1                       |           |          |                         |           |           |          |           |           |
| Rogers           |        | Described in FWP-PMP for NETL team                                                                                  |            |            |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| ORNL             | Task 8 | Experimental measurement of CO <sub>2</sub> reaction to formic acid at bench scale at process conditions            | 4/1/2023   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           | t        |           | 1         |
| Mahurin          |        | ST 8.1. Data mining for kinetic models                                                                              | 4/1/2023   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Kidder/Adkins    |        | ST 8.2. Full capture and conversion cycle demonstrated on bench scale reactor                                       | 1/1/2024   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           | 1         |
| ORNL             | Task 9 | Process Modeling and TEA/LCA                                                                                        | 9/1/2021   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
| Das              | -      | ST 9.1. Development of full-scale process models for capture and conversion                                         | 9/1/2021   | 12/1/2022  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 9.2. Operation of process models to achieve DOE targets                                                          | 10/1/2022  | 9/30/2023  |                       |          |           |                         |           |          |                         |           |           |          |           |           |
|                  |        | ST 9.3. Economic Analysis and Life Cycle Analysis                                                                   | 4/1/2023   | 9/30/2024  |                       |          |           |                         |           |          |                         |           |           | <u> </u> |           |           |
|                  |        |                                                                                                                     | 1, , ===5  | 5/5//      |                       |          |           |                         |           |          |                         |           |           |          |           | 4         |